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Satellite forecasting of crop harvest can trigger a
cross-hemispheric production response and
improve global food security
Tetsuji Tanaka1,2, Laixiang Sun 2,3✉, Inbal Becker-Reshef2, Xiao-Peng Song 2 & Estefania Puricelli2

Global food security is increasingly threatened by climate change and regional human con-

flicts. Abnormal fluctuations in crop production in major exporting countries can cause

volatility in food prices and household consumption in importing countries. Here we show

that timely forecasting of crop harvest from satellite data over major exporting regions can

trigger production response in the opposite hemisphere to offset the short-term fluctuations

and stabilize global food supply. Satellite forecasting can reduce the fluctuation extents of

country-level prices by 1.1 to 12.5 percentage points for anticipated wheat shortage or surplus

in Russia and Ukraine, and even reverse the price shock in importing countries for anticipated

soybean shortage in Brazil. Our research demonstrates that by leveraging the seasonal lags in

crop calendars between the Northern and Southern Hemispheres, operational crop mon-

itoring from satellite data can provide a mechanism to improve global food security.
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The global food crisis resulted from the COVID-19 pan-
demic and the Russian war on Ukraine illustrates the fra-
gility of our current food system1,2. These unpredicted

events exaggerate the well-anticipated shocks to food production
from climate change3. Many cases of shortages in food produc-
tion caused by extreme weather events or human conflicts are
over the regional scale but the impacts could propagate across the
globe to trigger widespread crises. In particular, global trade could
bring high food prices to the most vulnerable locations, which
may be different from the locations directly affected by severe
weather e.g., drought4–7. Thus, enhancing the resilience of the
global food system is a paramount task facing the world today.

Earth observations from satellites are transforming global
agriculture monitoring. One of the unique advantages of Earth
observations is their synoptic view of environmental change
provided increasingly in a timely manner. Recent progress in the
assessment of crop growing conditions using satellite remote-
sensing data and techniques provides a promising way to alleviate
some of the adverse impacts of severe drought on the world’s
food market. Advances in this field have allowed us to make
significant strides in estimating cereal yields at a national scale,
with a level of accuracy surpassing alternative forecasting meth-
ods, and providing this information one to two months prior to
harvest8–11. This improved capability of satellite-based crop
forecasting at broad scales opens opportunities to enhance the
stability of food production, supply and price at the global scale.
Intuitively, crop calendars are complementary with each other
between the Northern and Southern Hemispheres (Table 1).
Therefore, reliable and timely information on crop harvest in one
hemisphere could potentially stimulate or suppress production in
the opposite hemisphere by enabling farmers to leverage the
seasonal lags in crop calendars. In the business world, it is
reported that soybean and corn producers in Brazil frequently
monitor developments in the US Corn Belt and the US farmers
do the same to the Southern Hemisphere12. Such a cross-

hemispheric response could mitigate price volatilities in world
agricultural markets. The recent literature reviews of Pearlman
et al. 13, Häggquist and Söderholm14, and Leslie et al. 15 pointed
out that although the descriptions of uses of remote-sensing data
have been published in the literature for decades, research on
connecting these uses to improve decision-making and societal
outcomes has lagged far behind. Our research aims to fill this
important gap by providing a systematic examination of the “tele-
connected” cross-hemispheric interactions.

In this study, we quantify the market stabilization benefits of
the cross-hemispheric response mechanism triggered by remote-
sensing-forecasts using a procedure as presented in Fig. 1. We do
this quantification for the following three cases: First and second,
a better-than-normal wheat harvest in 2008 and a very poor
wheat harvest in 2012 in Russia and Ukraine, and third, a very
poor soybean harvest in 2012 in southern Brazil. Our remote-
sensing-based forecasting information in Russia and Ukraine
captures the forthcoming harvest results for both countries to a
satisfactory degree in May, which is two months earlier than the
typical wheat harvest season8–11. Our remote-sensing-based
soybean forecasting information in southern Brazil is derived at
the end of April, which is ahead of the planting dates for major
soybean producing regions in the Northern Hemisphere
(Table 1)16,17. We integrated the remote-sensing-based forecast-
ing information with a computable general equilibrium modeling
(CGE) approach using the Global Trade Analysis Project (GTAP)
database with a land allocation module in two steps (see Methods
and Supplementary Table 4 in Supplementary Note 2 for more
details). First, we assess the effects of real wheat yield shocks in
Russia and Ukraine and soybean production shocks in southern
Brazil using historical records from the Food and Agriculture
Organization of the United Nations (FAO) and Companhia
Nacional de Abastecimento. Then, we establish the supply
response scenarios with remote-sensing-based forecasting infor-
mation, and compared with the real shocks to measure the impact
of remote-sensing-based forecasting information on stabilizing
the global and regional wheat and soybean markets. Price vola-
tility and household consumption in importing countries are
considerably improved by remote-sensing-based forecasting
information.

Results
Remote sensing forecasting of the wheat and soybean harvests
in 2008 and 2012. The remote-sensing forecasting of wheat in
May and June 2008 indicated the production gained by 48.0% and
45.0% over the production level of 2007; and that production in
May and June 2012 declined by 15.3% and 19.9% from the
production level of 2011 (Table 2). The remote-sensing fore-
casting of soybean in April 2012 showed a decline of production

Table 1 Crop calendars for major wheat and soybean
producers.

Calendar month for winter wheat

J F M A M J J A S O N D

Northern Hemisphere
Canada H H P P
E.U. H H H P P P P
Russia H H P P
Ukraine H H P P
USA H H P P

Southern Hemisphere
Argentina H P P P P H H
Australia H H P P P P H H H
Paraguay P P P H H H
South Africa P P H H
Uruguay H P P P P H H

Calendar Month for Soybean
J F M A M J J A S O N D

Northern Hemisphere
Canada P P H H
E.U. P P H H
USA P P H H

Southern Hemisphere
Argentina P H H H P P P
Australia H H H P P P
Brazil H H H H H P P P P

Note: P: Planting, H: Harvesting. While Canada, EU, Russia, Ukraine, and USA produce both
winter and spring wheat, this table presents the crop calendars for winter wheat only.
Data source: Agricultural Market Information System, FAO GIEWS21 Country Brief.
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Fig. 1 Flowchart of the estimation strategy. Summary information of all
scenarios are provided in Supplementary Table 23.
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by 18% from the level of 2011 (Table 2). Compared to the real
records of FAO18, the accuracies of our remote-sensing fore-
casting for wheat were 78% and 74% in May and June 2008, and
56% and 73% in May and June 2012, which are more accurate
than those of the World Agricultural Supply and Demand Esti-
mates done by the United States Department of Agriculture
(Supplementary Table 1 in Supplementary Note 1). For soybean
in 2012, according to Brazil’s official statistics19, virtually all loss
of 12% at the national level (10 million tons, in comparison with
2011) was caused by the loss of 35% in southern Brazil (the
Brazilian States of Parana, Santa Catarina and Rio Grande do
Sul). Our remote-sensing forecasting reported a loss of 44% in
southern Brazil. We incorporate these forecasting values into the
total factor productivity parameters in the production function of
the wheat and soybean sectors in the corresponding regions,
respectively.

Effect on local prices, ceteris paribus. Abnormal wheat harvests
in Russia and Ukraine in 2008 and 2012 provoked changes in real
local wheat prices20 and household wheat consumption, ceteris
paribus, in the major importing regions (Table 3). Results sug-
gested that wheat prices decreased by 27–35% under the scenario
“W-Real08” and increased by 12–31% in “W-Real12” (Table 3).

The fluctuation extents of country-level prices were reduced by
1.1 to 12.5 percentage points. Taking Japan, one of the largest
wheat importers in the world, as an example, the changes in
domestic wheat price were −29% under “W-Real08” and +24%
under “W-Real12”, which were modified to −21% under “W-
May08” and +15% under “W-May12”, respectively. These ceteris
paribus experiments demonstrate that the early availability of
reliable wheat harvest information could lead to improved price
stabilization on local wheat markets of major importing countries
through farmers’ reactions in the Southern Hemisphere. The
results further show that this cross-hemispheric interaction
mechanism could also reduce the fluctuation extents of household
wheat consumption by 0.3–2.5 percentage points in 2008 and
0.8–2.0 percentage points in 2012 in the major importing coun-
tries (see the last two columns in Table 3). The relatively limited
effects on household consumption are attributed to the low price-
elasticity of demand for foods.

Similarly, the poor soybean harvest in southern Brazil in 2012
also provoked changes in real local soybean prices and household
soybean consumption, ceteris paribus, in the major importing
regions (Table 4). The historical shock to soybean production in
southern Brazil caused domestic prices of the major importing
regions to rise by 12.2–15.9% under the scenario “S-Real12”. The

Table 2 Production variations in the three cases in 2008 and 2012 (%).

Wheat in Russia & Ukraine 2008 2012 Soybean in Brazil (SUL) 2012

Real-shock (Historical records) 61.2% −27.2% Real-shock −12% (− 35%)
May Remote Sensing forecasting 48.0% −15.3% April remote sensing forecasting −18% (− 44%)
June remote sensing forecasting 45.0% −19.9%

Note: The changes were relative to the production level in the previous year. For soybean, according to Brazil’s official statistics, in the 2012 harvest season, virtually all loss of 12% at the national level (10
million tons, in comparison with 2011) was caused by the loss of 35% in Rio Grande do Sul. The cause was severe drought in the critical growth season.
Source: Historical records of wheat production are from FAO18. Official statistics of soybean production at the sub-national level in Brazil from Companhia Nacional de Abastecimento is available at
https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras?start=30.

Table 3 Impacts of the hemisphere-wise response on local wheat prices and household wheat consumption for 2008 and 2012.

Change in real wheat price [%] Effect of response
[percentage point]

Change in household wheat
consumption [%]

Effect of response
[percentage point]

W-Real08 W-May08 W-June08 W-May08 W-June08 W-Real08 W-May08 W-June08 W-May08 W-June08

(a) (b) (c) (b)–(a) (c)–(a) (d) (e) (f) (e)–(d) (f)–(d)

Bangladesh −35.2 −31.8 −32.0 3.4 3.3 9.1 8.0 8.0 −1.1 −1.1
China −27.4 −19.5 −19.9 7.8 7.4 6.6 4.4 4.5 −2.2 −2.1
Egypt −35.2 −33.2 −33.3 2.1 2.0 9.8 9.1 9.1 −0.7 −0.7
India −34.0 −32.0 −32.1 2.0 1.9 8.8 8.1 8.1 −0.7 −0.6
Japan −28.5 −20.6 −21.0 7.9 7.5 6.9 4.7 4.8 −2.2 −2.1
Korea −27.6 −18.4 −18.8 9.3 8.8 6.7 4.1 4.2 −2.5 −2.4
Nigeria −27.6 −21.3 −21.7 6.3 5.9 6.7 5.0 5.1 −1.8 −1.7
Turkey −30.2 −29.1 −29.1 1.2 1.1 7.7 7.3 7.3 −0.4 −0.3
Middle East −31.9 −28.8 −28.9 3.1 3.0 8.2 7.2 7.2 −1.0 −0.9
Africa −27.8 −23.7 −23.9 4.1 3.9 7.0 5.8 5.8 −1.2 −1.1

W-Real12 W-May12 W-June12 W-May12 W-June12 W-Real12 W-May12 W-June12 W-May12 W-June12
(g) (h) (i) (h)–(g) (i)–(g) (j) (k) (l) (k)–(j) (l)–(j)

Bangladesh 23.1 14.7 12.1 −8.5 −11.0 −4.1 −2.7 −2.3 1.4 1.8
China 19.2 11.6 9.2 −7.7 −10.0 −3.5 −2.2 −1.7 1.3 1.7
Egypt 31.0 24.7 22.7 −6.3 −8.2 −5.7 −4.7 −4.4 1.0 1.3
India 11.6 7.4 6.1 −4.2 −5.5 −2.2 −1.4 −1.2 0.8 1.0
Japan 24.1 15.4 12.7 −8.8 −11.4 −4.2 −2.8 −2.4 1.4 1.9
Korea 24.1 14.5 11.6 −9.6 −12.5 −4.2 −2.7 −2.2 1.5 2.0
Nigeria 22.6 15.4 13.2 −7.2 −9.4 −4.0 −2.9 −2.5 1.2 1.6
Turkey 31.1 26.1 24.5 −5.0 −6.5 −5.5 −4.7 −4.5 0.8 1.0
Middle East 24.6 17.5 15.4 −7.0 −9.2 −4.5 −3.3 −2.9 1.2 1.5
Africa 23.4 16.9 15.0 −6.4 −8.4 −4.3 −3.2 −2.9 1.1 1.4

Note: Price and consumption changes in W-Real08 and W-Real12 are taken from the FAO’s GIEWS database21 and FAOSTAT database19.
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extent of soybean price rising can be mitigated to a range of
−7.3% and −22.3% under the scenario “S-April12”. The price
rising in Mexico, Japan and Indonesia can be reversed to a
moderate decline by −6.4%, −4.5%, and −3.2% owing to the
responses in the Northern Hemisphere, mainly because as much
as 95%, 80%, and 89% of soybean imports of these three nations
were from the United States in 2011, respectively, according to
the UN Comtrade21. Our results further indicated that while
household soybean consumption of these major importers could
decrease by −2.3% to −2.9% under the “S-Real12” scenario,
under the “S-April12” scenario, the variation range would become
between −1.6% and 2.1%, implying a mitigation effect of 1.3–5.0
percentage points (Table 4).

Responses of farmers to forecast information. The timely
forecast information of abnormal wheat harvests in the Northern
Hemisphere could stimulate producers’ response in the Southern
Hemisphere (Table 5). For the better-than-normal wheat harvest
in Russia and Ukraine in 2008, such responses would lead to an
aggregated decrease in wheat production by 2.8 and 2.7 million
tons under the scenarios of “W-May08” and “W-June08,”
equivalent to 2.3% and 2.2% of the global wheat export in 2007.
In contrast, forecasting of a poor harvest in the Northern

Hemisphere in 2012 would increase wheat production in the
South Hemisphere by 2.6 and 3.5 million tons under the scenario
of “W-May12” and “W-June12”, equivalent to 1.8% and 2.3% of
the world export in 2011. Likewise, our analysis suggested that
agricultural producers in the United States and Canada respon-
ded to early forecasting information on the poor soybean harvest
in southern Brazil in 2012 (Supplementary Table 2 in Supple-
mentary Note 1). Producers in the United States and Canada
would extend their soybean production by 5% and 7%, resulting
in an aggregate increase of soybean supply by 4.4 million tons,
which is equivalent to 4.8% of the global soybean export in 2011.

Effects on the international market. The cost, insurance and
freight (CIF) price of wheat in major importing countries/regions
are also stabilized by remote-sensing-based forecasting informa-
tion (Table 6). Import price stability is especially crucial for
nations that heavily depend on external markets for food supply.
By effectively utilizing the timely forecasting information in
Russia and Ukraine, agricultural producers in the Southern
Hemisphere could adjust their wheat production by a proper
margin, and thus mitigate the extent of wheat price fluctuation on
international markets, which in turn contributes to the stabili-
zation of wheat prices in importing countries. The shock-

Table 4 Impacts the hemisphere-wise response on local soybean prices and household soybean consumption for 2012.

Change in real soybean price
[%]

Effect on price
[percentage point]

Change in household soybean
consumption [%]

Effect on consumption
[percentage point]

S-Real12 S-April12 S-April12 S-Real12 S-April12 S-April12

(a) (b) (b)–(a) (c) (d) (d)–(c)

China 15.4 2.4 −13.0 −2.9 2.1 5.0
Taiwan (customs territory) 15.3 1.7 −13.6 −2.8 −0.4 2.5
Germany 14.6 2.1 −12.6 −2.7 −0.4 2.3
Indonesia 13.8 −3.7 −17.5 −2.6 0.7 3.3
Japan 14.9 −4.5 −19.3 −2.7 0.9 3.7
Mexico 15.9 −6.4 −22.3 −2.9 1.3 4.2
Netherland 15.0 2.8 −12.2 −2.8 −0.6 2.2
Spain 15.5 8.3 −7.3 −2.9 −1.6 1.3
Thailand 15.2 7.0 −8.2 −2.8 −1.4 1.5
Africa 12.2 −0.4 −12.6 −2.3 0.1 2.4
Asia 12.8 1.0 −11.9 −2.4 −0.2 2.2

Note: Price and consumption changes in S-Real12 are taken from the FAO’s GIEWS database21 and FAOSTAT database19.

Table 5 Responses of wheat farmers in the Southern Hemisphere.

Change in production [%] Change in production [ton]

W-May08 W-June08 W-May08 W-June08

Wheat Grain Rice Wheat Grain Rice Wheat Wheat

Argentina −11.76 0.23 0.25 −11.23 0.22 0.24 −1,724,255 −1,646,146
Australia −7.01 0.08 0.26 −6.71 0.08 0.25 −758,184 −725,989
Paraguay −8.00 0.11 −0.03 −7.65 0.10 −0.03 −64,004 −61,178
South Africa −11.41 0.17 0.31 −10.85 0.16 0.29 −217,375 −206,613
Uruguay −10.56 0.19 0.15 −10.14 0.18 0.14 −64,517 −61,994
Total −2,828,335 −2,701,921

W-May12 W-June12 W-May12 W-June12
Wheat Grain Rice Wheat Grain Rice Wheat Wheat

Argentina 3.31 −0.06 −0.07 4.43 −0.08 −0.09 531,309 711,057
Australia 6.39 −0.03 −0.09 8.49 −0.04 −0.13 1,752,537 2,327,708
Paraguay 8.15 −0.11 −0.07 10.99 −0.15 −0.10 119,258 160,928
South Africa 5.72 −0.05 −0.37 7.63 −0.07 −0.49 114,751 153,047
Uruguay 6.77 −0.10 −0.08 9.13 −0.14 −0.11 88,117 118,704
Total 2,605,972 3,471,443
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smoothing effects of “W-May08” or “W-June08”, compared to
“W-Real08”, ranged between 1.2 and 9.3 percentage points (upper
panel of Table 6). Similarly, the shock-smoothing effects of “W-
May12” and “W-June12”, compared to “W-Real12”, would alle-
viate the price spike on both the global and importer’s local
markets by 5.5-12.6 percentage points (the lower panel of
Table 6). Likewise, for soybean, the shock-smoothing effects of
“S-April12”, compared to “S-Real12”, would reduce soybean price
inflation to a range of −6.4% (in Mexico) and 8.3% (in Spain)
(Supplementary Table 3 Supplementary Note 1).

Robustness of the results. A major concern about the robustness
of CGE simulation results lies in parameter uncertainty, given the
fact that the elasticity parameters adopted in a CGE model are
typically taken from the literature of empirical econometric
estimations22,23. We test the robustness of our primary results
against elasticity parameters assumed in this analysis (Supple-
mentary Table 4 in Supplementary Note 2). Our tests are run for
±30% of the parameter values that could influence the results of
the major simulations. These parameters include the Armington
elasticity for the grain sectors (i.e., wheat, other cereals, and oil
crops for the wheat analysis and these sectors plus soybean for the
soybean simulations) and value-added substitution elasticity for
food-related sectors (the same as the robustness tests for the
Armington elasticity), the elasticity of substitution between food
products for the household, as well as the elasticity of land
transformation. In addition, we run a set of sensitivity tests by
halving the substitution elasticities of production factors for food-
related sectors. The testing results are qualitatively robust against
the three sets of elasticities, although moderate quantitative var-
iations are present. Supplementary Note 2 reports the quantitative
variations of local wheat and soybean price changes in importing
regions (Supplementary Tables 5–12), the change in household
wheat and soybean consumption in importing countries (Sup-
plementary Tables 13–20), and farmers’ responses in the

Southern and Northern Hemispheres (Supplementary Tables 21
and 22), respectively.

Discussion
Significant price volatility of agricultural commodities is a threat
to global food security and a challenge for the world’s policy
makers. Reliable and timely forecasting of food production, a
unique application of satellite Earth observations, can stabilize the
agricultural market. Our simulations of the world-trade general
equilibrium model showed that satellite-based timely, accurate
and reliable forecasts of wheat and soybean harvest in major
exporting countries could stimulate responses by producers of the
opposite Hemisphere. Utilizing the seasonal lags in crop calen-
dars between the two hemispheres, producers of the opposite
Hemisphere could adjust their plans to address the foreseen
supply-demand gap in world markets. Our results also indicate
that such a response could reduce price volatilities in world food
and feed markets.

The inter-hemispheric system brings about three major bene-
fits to the world economy. First, the cross-hemisphere response
mechanism can help stabilize global agricultural markets. In other
words, such a global hedging mechanism lessens the risk pre-
mium of consumers or producers of agricultural/food commod-
ities with smaller price fluctuations, assuming that the majority of
purchasers or farmers have a risk-averse utility function. Second,
this mechanism can enhance the efficiency of resource allocation
in the agricultural sectors. One of the conditions to establish a
perfectly competitive market is perfect information. The satellite-
based harvest prediction information can be used to reduce
deadweight losses on the international and indigenous markets,
leading to more efficient allocation of labor, capital, land, and
other resources. Third, the mechanism has the potential to make
speculators such as hedge funders hesitate to invest in agricultural
commodities when abundant or poor crops are convincingly
reported before harvest. If investors perceive the farmers’

Table 6 Changes in CIF prices of wheat by major importers for 2008 and 2012.

Change in real wheat price [%] Effect of hemisphere-wise response
[percentage point]

W-Real08 W-May08 W-June08 W-May08 W-June08

(a) (b) (c) (b)–(a) (c)–(a)

Bangladesh −35.4 −32.0 −32.1 3.4 3.3
China −28.9 −22.8 −23.1 6.1 5.8
Egypt −36.4 −34.3 −34.5 2.1 2.0
India −37.3 −35.2 −35.3 2.1 2.0
Japan −28.5 −20.6 −21.0 7.9 7.5
Korea −27.7 −18.4 −18.9 9.3 8.8
Nigeria −27.8 −21.5 −21.8 6.3 6.0
Turkey −34.8 −33.6 −33.7 1.2 1.2
Middle East −33.2 −30.0 −30.2 3.2 3.0
Africa −28.8 −24.7 −24.9 4.2 4.0

W-Real12 W-May12 W-June12 W-May12 W-June12
(d) (e) (f) (e)–(d) (f)–(d)

Bangladesh 23.3 14.8 12.2 −8.5 −11.1
China 22.6 13.4 10.6 −9.2 −12.0
Egypt 32.8 26.1 24.1 −6.7 −8.8
India 19.8 13.9 12.0 −5.9 −7.7
Japan 24.2 15.4 12.7 −8.8 −11.5
Korea 24.1 14.5 11.6 −9.6 −12.6
Nigeria 22.9 15.6 13.4 −7.3 −9.5
Turkey 34.1 28.6 26.9 −5.5 −7.2
Middle East 26.7 19.0 16.6 −7.7 −10.0
Africa 24.3 17.6 15.6 −6.7 −8.8
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adjustment actions, the expected excessive profits from spec-
ulative activities would be diminished.

One particular policy implication is about trade restrictions.
The cross-hemispheric system works based on price transmission
between international and local markets. Any disturbance of
international market synchronization such as export and import
restrictions wanes the functionality of the inter-hemispheric
response mechanism. For instance, if export restrictions are
imposed by Australia, the spillover effect induced by the land
allocation adjustment of Australian farmers would not be fully
conveyed to the world market. For a similar reason, lowering
import trade barriers by food-deficit countries facilitates the
receiving of the benefit from the inter-hemispheric responses.
Although historically, national governmental bodies occasionally
regulated the export or import of agricultural goods, countries
that imposed export restrictions could receive a substantial wel-
fare loss mainly because farmers in exporting countries lost the
opportunity to sell their crop products to foreign buyers, leading
to excess supply and lower prices in the domestic market as
shown by Tanaka and Hosoe23,24. Besides, an export restriction
can cause a backfire of speculation on the international market
and lead to a rise in import prices of beef and pork in the fol-
lowing year. To evaluate this second-stage impact in a CGE set-
ting is a topic for future research.

Another policy implication is to support the research and
development of timely and more accurate crop harvest forecast
and improve the accessibility to such forecasting information. We
uncovered the benefits of the forecasting information which was
one or two months earlier than the conventional harvest infor-
mation. However, the accuracies of our forecasting for wheat in
Russia and Ukraine were only 78% and 74% in May and June
2008, and 56% and 73% in May and June 2012. If the forecasting
accuracy can be significantly improved to over 90% in May,
meaning two months before harvest, more farmers in the
Southern Hemisphere could respond to the information with
fuller confidence and longer time window, which would sig-
nificantly enhance the functionality of the inter-hemispheric
supply response mechanism in improving the global food
security.

Methods
Choice of the three cases. It is worth noting that a valid case for
the general equilibrium simulations needs to simultaneously meet
the following three conditions: (1) the availability of a global
social accounting matrix (SAM) in the year (t–1) prior to the year
(t) with a good or poor harvest, (2) the best available remote-
sensing forecasting which is able to capture the good or poor
harvest in the year (t), (3) the sufficiently large supply variation
caused by the good or poor harvest which is able to exert a
noticeable impact on the global food market. We have done this
match across all published SAMs by the GTAP-v10 database and
the best available remote-sensing forecasting results of wheat,
corn, and soybean harvests in the Global Agriculture Monitoring
System of NASA Harvest Program (https://glam.nasaharvest.org/
). Our choice of the soybean case is further enabled by the
recently published remote-sensing dataset17. As a result, we
identified two cases for wheat, and one case for soybean, but did
not find a valid case for corn.

Remote sensing estimates of production. Pre-harvest assess-
ment of crop yield has been an important research theme since
the 1970s15,25. “The Large Area Crop Inventory Experiment”
project launched in 1974 by the United States Department of
Agriculture, the National Aeronautics and Space Administration,
and the National Oceanic and Atmospheric Administration

demonstrated that crop monitoring from space could supply
essential pre-harvest information on production in terms of
precision and timeliness26. A variety of methods have been
developed to estimate crop yields using remotely sensed infor-
mation. One stream of the research employs biophysical crop-
simulation models to retrieve crop growth parameters from
remotely sensed data and then, calibrates and drives the models
based on these parameters. Such crop-simulation models include
CERES27, WOFOST28, CROPSYST29, and STICS30. However,
these models typically require numerous crop-specific inputs such
as soil characteristics, management practices, agro-meteorological
data, and phonological dates to simulate crop growth and
development through the crop cycle31,32. In contrast, the statis-
tical regression-based approaches are typically more straightfor-
ward to implement and do not require numerous inputs because
they work with the empirical relationships between historical
records of yields and reflectance-based vegetation indices and
agrometeorological data15,25. Within this second stream of
research, Fischer33 showed the possibility to forecast wheat yields
using leaf area at the onset of the reproductive stage. Tucker et al.
34 found significant linear correlations between wheat yields and
time-integrated Normalized Difference Vegetation Index (NDVI)
values during the growing period. They further demonstrated that
the strongest correlation between yields and NDVI appeared
around the time of maximum green leaf biomass. Pinter et al. 35

showed strong correlations between wheat yields and accumu-
lated NDVI during the growing season. Based on the accumu-
lative progress in this stream of research, numerous studies have
related spectral vegetation indices to crop yields in a variety of
regions and countries36–38.

Our wheat yield forecasting for Russia and Ukraine is based on
the method presented in Becker-Reshef et al. 8 and its latest
development9–11. Becker-Reshef et al. 8 developed a generalized
empirical model for forecasting winter wheat yield and produc-
tion using remote sensing data and official statistics. The model
establishes a robust relationship between the yields, the seasonal
peak NDVI derived from Moderate Resolution Imaging Spectro-
radiometer and maximum winter wheat percentage per corre-
sponding administrative units of the country. The word
“generalized” here means that the relationship between the
maximum NDVI signal of pure winter wheat pixels and yield
established by the two-step procedure of the method is
transferable and directly applicable at the state and national
levels. The method was further improved by Franch et al. 10 to
incorporate Growing Degree Day information into the model to
improve the timeliness of the forecasts. The method has been
applied for multiple countries including the USA, Ukraine and
China, and these applications have produced accurate forecasts of
wheat production at the national/state level 1-2 months before
harvest. In this research, the timing of remote sensing monitoring
was on 10th of May and 9th of June in 2008 and 2012 for Russia
and on 5th of May and 4th of June in 2008 and 2012 for Ukraine,
respectively. Given the frequency of remotely sensed data, such
models can provide forecasts that are updated on a daily or
weekly basis. Supplementary Figure 1 in Supplementary Note 3
presents the positive NDVI anomaly in 2008 and the negative
NDVI anomaly in 2012 during the critical wheat growing season
in Russia and Ukraine.

Our soybean forecasting information is derived from the data
and methods reported in Song et al. 16,17. Song et al. 17

established a machine-learning-based turnkey classification
model to characterize soybean cover across the South American
continent at 30 m spatial resolution and in the soybean growth
season every year. The model was constructed based on three
years (2017 through 2019) of continentally distributed field
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observation as training and consistently processed Landsat and
Moderate Resolution Imaging Spectroradiometer satellite obser-
vations as input. With operational satellite acquisitions, the
established model can be applied in a back-casting mode to map
historical soybean cultivation as well as in a forecasting mode to
map future soybean cultivation. Although the direct output of the
model is a soybean classification map, crop areas derived from the
high-resolution map is a close surrogate to soybean production
for the following reason. To be mapped as soybean, a pixel must
present a complete growth cycle across a growing season as well
as sufficient greenness in the spectral feature space. Therefore, the
mapped soybean pixels represent those actively cultivated fields
with harvestable yield. Failed crops resulting from weather
anomalies that show an incomplete growth cycle or reduced
greenness are not mapped. In this research, the remote-sensing-
based soybean production anomaly in 2012 in southern Brazil
(the Brazilian States of Parana, Santa Catarina and Rio Grande do
Sul) represented the information available on April 30th, 2012
(Supplementary Figure 2 in Supplementary Note 3).

The establishment of scenarios and the estimation strategy. We
set up the corresponding CGE model for each of the three cases to
demonstrate the effects of timely forecasting information on
wheat and soybean production in Russia-Ukraine and southern
Brazil. In the three CGE models, we select 2007 and 2011 as the
base years (i.e., the base-year scenarios “W-Base07”, “W-Base11”,
and “S-Base11”). This selection is justified by the following two
reasons. First, the GTAP-v10 database39 provides the balanced
social accounting matrices (SAM) for the world economy in 2007
and 2011, which are indispensable for the construction of the
three CGE models. Second, the focus of this research is on the
potential market stabilizing effect of the inter-hemispheric supply
response mechanism triggered by a timely forecast of crop har-
vests. A very good wheat harvest in 2008 compared to 2007 and a
very bad wheat harvest in 2012 compared to 2011 in Russia and
Ukraine, and an extremely poor soybean harvest in 2012 in Rio
Grande do Sul in Brazil compared to 2011, in combination with
the availability of the SAMs for the world economy in 2007 and
2011, provide a unique opportunity for realizing the mission of
this research (cf. “Choice of the three cases” above).

The real level of wheat production in 2008 in the regions (i.e.,
the Russia-Ukraine region) increased by 61.2%, and that in 2012
dropped by 27.2%, respectively, in comparison with the level in
the previous year (Table 2). We incorporate such extent of
production increase and decrease into the total factor productiv-
ity parameters in the production function of the wheat sector in
the Russia-Ukraine region (the scenarios “W-Real08” and “W-
Real12”) and that of the soybean sector in Brazil (S-Real12). In
the real-shock scenarios, we do not allow factor mobility across
sectors and regions in all the countries except Russia-Ukraine or
Brazil in each model because the news on the harvest variations in
these three countries came in the harvest period and was too late
for any proactive adaptation in the counterpart Hemisphere
regions (the left panel in Fig. 1).

In the cross-hemispheric response scenarios “W-May08,” “W-
June08,” “W-May12,” and “W-June12,” we allow rational
responses of producers in the Southern Hemisphere to reduce or
augment wheat planting when they receive the prompt forecasting
information on the forthcoming harvests in the Russia-Ukraine
region, which were an increase of 48% and 45% in the May and
June forecasting in 2008 and a decrease of 15.3% and 19.9% in the
May and June forecasting in 2012 (Table 2). In the same way, we
assume that rational farmers in the Northern Hemisphere response
to early prediction data of soybean production in Brazil, which is
an 18% decline in production (Table 2). The extent of the response

in re-allocating production factors is endogenously determined by
the market opportunity that emerged as a result of the anticipated
harvests. This means that we allow factor mobility for the response
scenarios “W-May08,” “W-June08,” “W-May12,” “W-June12” and
“S-April12” being subject to the constraint of the wheat and
soybean crop calendars as presented in Table 1. In more detail,
under the response scenarios, wheat farmers in all four Southern
Hemisphere countries (Argentina, Australia, Paraguay and South
Africa) can make crop planting decisions in response to price
variations induced by the early forecasting information in May or
June in 2008 or 2012. By the same token, soybean farmers in the
Northern Hemisphere (i.e., the U.S. and Canada) can adjust their
soybean planting areas according to the remote-sensing informa-
tion in April (the right panel in Fig. 1). The technical procedure of
implementing the cross-hemispheric response scenarios includes
two steps (the right panel in Supplementary Figure 3, Supplemen-
tary Note 3). In the first step, the production shocks forecasted in
May, June, or April drive the allocation of production factors in the
Southern or Northern Hemisphere in an endogenous manner. This
step produces intermediate equilibrium. In the second step, the
real-shocks of harvest failures in the Russia-Ukraine region or
Brazil that occurred in 2008 or 2012 are introduced to the above-
mentioned intermediate equilibrium setting to produce final
equilibriums. In this step, the allocation for the factors of
production is fixed or immobile across sectors. Supplementary
Table 23 in Supplementary Note 3 summarizes the scenarios
explained above, together with the information on factor mobility.

World trade CGE models. The general equilibrium theory pro-
posed by L. Walras was refined by K. Arrow and G. Debreu, two
Nobel Prize Laureates of Economics, to analyze the existence and
stability of competitive equilibrium. Computable general equili-
brium (CGE) models were originated from input-output models
pioneered by Wassily W. Leontif and architected initially in
Johansen40 and Harberger41. A CGE model is formulated as a
nonlinear programming problem and is built on an integrated
system of equations whose simultaneous solution determines
values of endogenous variables. The underlying equations in the
system are derived from economic theory to represent the
behavior of economic agents and markets. The model is capable
of conducting commodity and price analysis with detailed
national accounts and international trade data. For example, in
comparison with the multi-regional input-output modeling in
explaining land-use change42–44, the advantage of CGE is that it
can model the endogenous substitution across alternative pro-
duction choices and land-use types, which is driven by cost-
benefit calculations of economic agents under the condition of
market competition. In this way, it avoids the limitation of fixed
land-use coefficients attached to individual sectors in the multi-
regional input-output modeling.

We construct three world-trade computable general equili-
brium (CGE) models with a land allocation module based on the
GTAP-v10 database for SAMs in 2007 and 201139. These SAMs
encompass 141 customs territories/regions and 65 industrial
sectors. We aggregated them into 23 regions and 13 sectors
(Supplementary Table 24 in Supplementary Note 3) for the wheat
sector analysis and 19 regions and 14 sectors for the soybean
sector analysis (Supplementary Table 25 in Supplementary Note 3,
and Supplementary Note 4). In this way, we can focus on large
wheat or soybean importers and exporters for the regional
aggregation and on the agricultural and food-related commod-
ities/sectors for the sectoral aggregation. For readers who are not
familiarized with CGE models, please refer to Supplementary
Note 5 in which we present general information on CGE and also
detailed specifications of the model. Our CGE model follows the

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00992-2 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:334 | https://doi.org/10.1038/s43247-023-00992-2 | www.nature.com/commsenv 7

www.nature.com/commsenv
www.nature.com/commsenv


principles of the standard CGE models developed by Devarajan
et al. 45 (Supplementary Figures 4). We extend the standard
model to the global scale with three global SAMs from the GTAP
database and introduce several modifications to enhance the
representation of behaviors of different agents and markets.

It is assumed that each sector maximizes its profit with the
Leontief technology and that a constant elasticity of substitution
(CES) function aggregates the factors of production such as labor,
capital, and farmland, with elasticities from the GTAP database
and recent literature. Using the constant elasticity of transforma-
tion form, the domestically produced goods are distributed
between a composite export and domestic good, which is
combined with an import aggregate good by the Armington
function46. The Armington elasticities from the GTAP database
are for the medium to long-run analysis. To gauge the short-term
impacts of farmers’ response to remote sensing forecasting
information, those elasticities for food-related sectors are halved
following the estimations of Bajzik et al. 47.

Our CGE model allows for substitution across food-related
goods in household consumption with the constant elasticity of
substitution (CES) form (Supplementary Figure 5). The value of
substitution elasticity is established based on the estimations of
price elasticity of demand for cereal goods48. The relationship
between the price elasticity of demand and the elasticity of
substitution is given in Shoven and Whalley49.

We replace the perfect farmland mobility assumption between
sectors in the standard model with three-level constant elasticity of
technology (CET) functions similar to those employed in conven-
tional land-use CGE models50. At the first level, the land is assigned
for livestock and crop aggregate (Supplementary Fig. 6). The second
level specifies the substitutive relationship between cereal-oil crop
composite and other crops. The third level specifies the substitutive
relationship across wheat, coarse grain, and oilseeds (including
soybean in the soybean analysis). With the land allocation
specification, the model is allowed to describe the optimized farmers’
planting decision-making. The elasticities of substitution between
livestock and aggregated crop, between two crop groups, are assumed
to be−0.2 and−0.5, respectively, following the existing literature50,51.
Haile et al. 51 estimated the short-run growing-area elasticities with
respect to own crop prices for each major global producer of wheat
and soybean, which are suitable for the purpose of this research.

Limitations. Several limitations of our research are worth men-
tioning. First, we assume that agricultural producers in the
Southern and Northern Hemispheres can choose a more profit-
able crop mixture in response to the timely harvest forecasting. In
practice, however, some of them may not be able to react to such
information owing to the constraints of crop rotation and other
pre-existing conditions in their farmland. Ignorance of such
constraints would lead to an overestimation of the benefits of the
cross-hemispheric response mechanism.

Second, in our simulations, we focus on wheat or soybean price
variations which are exclusively associated with the very good and
bad harvests in the Russia-Ukraine region and southern Brazil.
Yet, in reality, speculative activities may have further destabilized
food markets with additional long and short positions immedi-
ately after the good and bad harvests were predicted and reported
to the public. If a huge amount of speculative money was invested
in wheat or soybean commodity as soon as it was announced and
farmers in the Southern or Northern Hemisphere reckoned the
effect in their expectation, the cross-hemispheric reactions and
the beneficial effect would become greater. Therefore, our analysis
could underestimate the beneficial effect of the cross-hemispheric
response mechanism.

Third, we assume in the simulations for simplicity that only
five countries in the Southern Hemisphere for the wheat sector
analysis and two countries in the Northern Hemisphere for the
soybean sector analysis utilize the pre-harvest information to
adjust the land allocation for crops. If more farmers in the
opposite Hemisphere regions responded to early information, the
international market adjustment would have been larger, mean-
ing that our research could again underestimate the benefits of
the interhemispheric effects.

The fourth limitation concerns the annual timeframe of our
CGE model. It assumes that production in one hemisphere is
exogenous, and only farmers in the opposite hemisphere can adjust
their production. This approach focuses on a particular trajectory
in a recursive semi-annual setting, as recommended by Gouel52

and Miranda & Glauber53. While this configuration effectively
demonstrates the economic logic underlying the cross-hemispheric
response mechanism, extending our model to a recursive semi-
annual framework could offer more insights. Specifically, it could
enhance our understanding of how precise harvest forecasting
information impacts intra-annual price volatility.

Data availability
The MODIS Surface Reflectance 8-Day 250 m data is distributed by NASA EOSDIS Land
Processes Distributed Active Archive Center, https://doi.org/10.5067/MODIS/
MOD09Q1.061 and can be accessed from: https://lpdaac.usgs.gov/products/
mod09q1v061/. The annual soybean maps over Brazil can be viewed and downloaded at
https://glad.earthengine.app/view/south-america-soybean. The data for the SAMs are
taken from the GTAP database version 10 (https://www.gtap.agecon.purdue.edu/
databases/v10/index.aspx). The historical data of wheat production are from FAOSTAT
(https://www.fao.org/faostat/en/). Official statistics of soybean production at the sub-
national level in Brazil are available at https://www.conab.gov.br/info-agro/safras/serie-
historica-das-safras?start=30.

Code availability
The general algebraic modeling system codes used for this analysis are available upon
reasonable request.
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