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Since 2004, commodity futures markets have seen an unprecedented liquidity inflow linked 
to noise traders that follow global liquidity cycles rather than market fundamentals. This 
paper develops a price discovery model for commodity futures markets that incorporates 
noise trader effects by assuming two forms of limits to arbitrage: transaction costs and noise 
trader risk. It is shown that under these assumptions, commodity prices are driven by both 
market fundamentals and noise trader positions. Further, noise trader effects spill over to 
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1. Introduction 

Since 2004, commodity futures markets have seen an unprecedented liquidity inflow 
linked to financial investors that seek exposure to commodities for portfolio diversification. 
The inflow has been spurred by emerging evidence that commodity futures provide a natural 
hedge against inflation (Gorton and Rouwenhorst 2006) and in anticipation of high returns 
due to increasing demand from emerging market economies resulting in a commodity ‘super 
price cycle’ (Kaplinsky 2006). The inflow has further been facilitated by deregulation of 
U.S. American commodity futures markets and the introduction of innovative trading 
instruments, such as commodity indices. These developments had a lasting effect on the 
volume and nature of trades in these markets1 and triggered a debate around potential 
implications for price discovery. Commodity markets have been reported to progressively 
behave like traditional asset markets (Domanski and Heath 2007) and prices are conjectured 
to follow global liquidity cycles rather than market fundamental, most prominently in 2008 
when commodity markets served as the main transmission channel of the global financial 
crisis to emerging and developing markets (Nissanke 2012). 

With the intention to explore the effects of novel trading instruments such as 
commodity indices on price discovery mechanisms in commodity markets, I develop a price 
discovery model with heterogeneous agents. Following the tradition of De Long, et al. 
(1990) and the more recent literature that emerged from the above debate, e.g. see Gilbert 
(2008), Nissanke (2012) and Irwin and Sanders (2012), I distinguish between informed 
traders, arbitrage traders and uninformed noise traders. The latter trader category is 
associated with index traders as their position taking is largely synchronised with global 
liquidity cycles but unrelated to market fundamentals (Alam and Gilbert 2017). The model 
builds on the price discovery model by Garbade and Silber (1983) and extends the model’s 
initial assumption of limits to arbitrage due to transaction costs by the additional assumption 
of limits to arbitrage due to noise trader risk. I show that under these assumptions, the 
relationship between cash and futures markets and the price discover in both markets 
depends on the elasticity of arbitrage and the weight of uninformed noise traders in the 
market.  

Specifically, four different market regimes are identified: (1) effective arbitrage, (2) 
transaction cost induced limits to arbitrage and no noise trader risk, (3) effective arbitrage 
and noise trader risk, and (4) limits to arbitrage and noise trader risk. Price levels and 
changes are driven by both changes in market fundamentals and changes in noise trader 
positions under the latter two regimes. Noise trader effects spill over to the cash market if 
arbitrage between cash and futures markets is effective but is confined to the futures market 
if arbitrage between the two markets involves transaction costs. If transaction costs hinder 
arbitrage, cointegration between cash and futures prices breaks down and the market basis 
follows a random walk process. If further, noise trader risk is present, the market basis 
reflects price impulses unrelated to market fundamentals. The latter also applies to the 

 
1 The liquidity inflow was visibly curbed with regards to over-the-counter transactions after the Dodd-

Frank Act of 2010, but the general interest in commodity derivatives did not fade (BIS 2016).  
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calendar spread between two consecutively traded contracts if the composition of traders in 
both contracts differs.   

The number of studies that theoretically explore the potential effects of heterogeneous 
traders including noise traders on price discovery mechanisms in commodity futures 
markets is small yet growing. Among notable contributions are studies by Basak und 
Pavlova (2016), Brunetti and Reiffen (2014), and Hamilton and Wu (2014, 2015). These 
authors build on the conjecture that the presence of noise traders, if acting systematic and 
not at random, dilutes the market’s information content, therefore feeding unwarranted 
speculative bubbles. This paper contributes to the growing literature by development of a 
model that considers jointly the presence of noise traders and limits to arbitrage due to 
transaction costs. This contribution is particularly valuable as it formalises the link between 
index traders and an excessive market basis that was suggested for several US grain markets 
over recent years (e.g. see Irwin, et al. 2011, Garcia, et al. 2015, van Huellen 2018a) as well 
as anomalies in commodities’ term structures (e.g. see Heidorn, et al. 2015, van Huellen 
2018b). 2 

The empirical validity of the model is tested for six grain and soft commodity markets 
traded at the Chicago Board of Trade (CBT): soft red winter wheat, number two yellow 
corn, number one yellow soybeans, cocoa, coffee ‘c’, and number two cotton. Arbitrage 
effectiveness is found to be low for corn and wheat markets, where non-convergence linked 
to bottlenecks in the delivery system occurred over recent years (Garcia, et al. 2015). Trader 
position data is found to have a significant effect on the price discovery process in the short-
run and feedback effects to cash markets are strongest for markets for which the futures 
market is leading the price discovery process and arbitrage is effective on average. The 
coincidence of noise trader risk and perfectly inelastic arbitrage, corresponding to regime 
four, is rare. However, evidence for noise trader risk is found in all six markets with varying 
elasticities to arbitrage resulting in spill-over effects to cash markets.   

The paper is structured in five parts. After this short introduction, the paper continues 
with the derivation of the price discovery model for commodity markets with heterogeneous 
agents and limits to arbitrage due to transaction costs. The third part presents data and 
methodology for testing the model. The forth part reports empirical results and the fifth part 
concludes on the evidence.  

2. A Heterogeneous Trader Model  

Eq. (1) summarises the no-arbitrage condition between cash and futures prices, with 
!! being the futures price at time t with maturity date T, "! being the cash price at t, #! and 
$! being continuously compounded risk free interest rate and storage costs over time % =
' − ) and *! being the convenience yield; a utility based reward that accrues to the holder 
of inventories.  

 
2 See Irwin (2013), Fattouh, et al. (2013), Cheng and Xiong (2014) and Boyd, et al. (2018) for a 

comprehensive summary of the empirical literature on the potential effects of index investors on price 
dynamics in commodity futures markets.  
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!!,# = "!+(%!&'!()!)+ (1) 

Taking logs of Eq. (1), with % = 1 and net-carry costs -! = #! +$! − *! for 
simplicity, yields Eq. (2). At maturity % → 0 so that 1!,! = 2!  and market basis 3! ≡ 2! −
1!,! = 0. 

1!,!&, = 2! + -! (2) 

It is useful to distinguish between two arbitrage mechanisms. Spatial arbitrage 
exploits deviations between cash and futures prices beyond the carry relationship in Eq. (2). 
Fundamental arbitrage exploits deviations of price levels from the underlying fundamental 
value, but not necessarily relative prices. The former relies on arbitrage traders’ willingness 
to trade the derivative and the physical commodity. The latter relies on the assumption that 
traders in both futures and cash markets make decisions based on the same information set 
so that a common (fundamental) factor drives both markets.  

The spatial no-arbitrage condition is described by Eq. (2), while Eq. (3) must hold 
under the fundamental no-arbitrage condition with (1, −7) being the cointegrating vector 
and 9! the common factor, in our case fundamental information. The common factor 
implies cointegration of the two price-series so that 1! (1! = 1!,!&, for simplicity hereafter) 
and 2! are decomposed into a permanent common information component 9! and a 
transitory noise component 1:! and 2̃! respectively; see Granger (1986) and Gonzalo and 
Granger (1995).3  

<1!2!
= = >71?9! + <

1:!
2̃!
= (3) 

In the following, I will extend the model by Garbade and Silber (1983) which already 
incorporates the assumption of limits to spatial arbitrage in the form of transaction costs or 
market frictions by the additional assumption of limits to fundamental arbitrage. Garbade 
and Silber (1983) assume two trader types, informed traders that are active in the cash or in 
the futures market, and arbitrage traders that are active in both futures and cash markets. 
Eq. (4) summarises the solutions for the market clearing prices in the cash and futures 

market at time ) with @ = A -
./"
B / <1 + A -

./"
B + D -

./#
E= and 3 = D -

./#
E / <1 + A -

./"
B +

D -
./#

E=. F0 is the number of informed traders in the cash market, F1 is the number of 

informed traders in the futures market, G > 0 is elasticity of spatial arbitrage, I > 0 is 
elasticity of demand in both futures and cash markets and #!0 and #!

1 are the average 

 
3 Note that cointegration only holds if !$~#(0) in Eq. (2). The reasonability of this assumption is 

discussed in the following section.  
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reservation prices of cash and futures traders respectively. See Appendix A1 for a detailed 
derivation of Eq. (4).  

2! = (1 − @)#!0 + @#!
1 − @-! 

1! = 3#!0 + (1 − 3)#!
1 + 3-! 

(4) 

In addition to the assumption of limits to spatial arbitrage incorporated in the Garbade 
and Silber (1983) model via finite elasticity of arbitrage G, I make the additional assumption 
of limits to fundamental arbitrage via noise trader risk. Let three trader types exist in the 
futures market. Arbitrageurs that exploit any deviations from Eq. (2), informed traders who 
base their positions on information about market fundamentals J, and uninformed traders 
who follow an impulse K that is common among all uninformed traders but unrelated to 
market fundamentals. Only informed traders are present in the cash market, while both 
informed and uninformed traders are present in the futures market. This composition reflects 
the arrival of financial liquidity, channelled predominantly via indices, at commodity 
futures markets. Index positions are largely synchronised over global liquidity cycles but 
unrelated to market fundamentals (Alam and Gilbert 2017).  

With the division between informed and uninformed traders, the reservation prices of 
the ith and jth trader in the cash and futures market are #2,!0 = L2,![2!|J2] and #3,!

1 = (1 −

P)QL3,!R1!SJ3TU + PQL3,![1!|K3]U, with K3 ∈ K and J3 ∈ J and with P being the probability 
that the jth trader is a noise trader. Hence, if ∑L2,![2!|J2] =∑L3,![1!|J2] = 9! and 
∑L3,![1!|K2] = X!, the evolution of the average reservation prices can be expressed as in Eq. 
(5), with the white noise components $!~Z(0) being the sum of idiosyncratic errors.4 

#!0 = 9! +$!0 

#!
1 = (1 − P)9! + PX! +$!

1	 
(5) 

By rewriting 9! = 9!(, + ∆9! and X! = X!(, + ∆X! and following Garbade and 
Silber (1983) in assuming that each trader expects the last price to be the full information 
value so that 2!(, and 1!(, have to be the average reservation prices immediately after the 
last clearing, it follows that 9!(, = X!(, = 1!(, for the futures market and 9!(, = 2!(, for 
the cash market. Therefore, Eq. (5) can be transformed into Eq. (6).  

#!0 = 2!(, + ∆9! +$!0 

#!
1 =	1!(, + (1 − P)∆9! + P∆X! +$!

1 
(6) 

 
4 Note that Eq. (5) can be interpreted as factor decomposition, with common factor '$. Under limits to 

spatial arbitrage ( = 0, Eq. (5) is equivalent to Eq. (3) with (1 − ,) = - and .$ = /$%, 1$ = /$& if 2$~#(0). 
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For simplicity, we assume that net-carry costs follow a white noise process with -̅ 
being mean net-carry costs, see Eq. (7).5 This assumption will be eased in the following 
section.  

-! = -̅ + $!4 (7) 

Substituting Eq. (6) and Eq. (7) into Eq. (4) yields an error correction decomposition 
with the long-run dis-equilibrium error of Eq. (2) +! =	 (1! − 2! − -̅) and short-run shocks 
driven by traders’ price impulses; ∆9! for informed traders and ∆X! for noise traders. For 
ease of presentation ^0 = @P, ^1 = (1 − 3)P, $!05 = $!0 + @($!

1 −$!0 −$!4), and $!
15 =

$!
1 − 3($!

1 −$!0 −$!4). 

∆2! = @+!(, + (1 − ^0)∆9! + ^0∆X! +$!05 

∆1! = −3+!(, + _1 − ^1`∆9! + ^1∆X! +$!
15 

(8) 

If noise traders induce systematic price impulses, so that L[∆X!] ≠ 0, the effect of 
these traders on the price discovery process depends on the elasticity of spatial arbitrage G, 
the weight of the futures market F1 relative to the cash market F0 as well as the weight of 
noise traders P in the futures market. Note that these impulses by noise traders only enter 
prices in the short-run but not the long-run.  

Following from Eq. (8), Table 1 distinguishes between four different arbitrage 
regimes: (1) effective spatial arbitrage and no noise trader risk, (2) limits to spatial arbitrage 
and no noise trader risk, (3) effective spatial arbitrage and noise trader risk and (4) limits to 
spatial arbitrage and noise trader risk. If noise trader risk is present, as in (3) and (4), price 
levels and changes are driven by both changes in market fundamentals and changes in 
speculative demand. Speculative demand spills over to the cash market if spatial arbitrage 
is effective as in (3) but is restricted to the futures market if spatial arbitrage in limited as in 
(4). Further, if spatial arbitrage is limited, as in (2) and (4), the price levels are determined 
by the past settlement price of the respective markets resulting in the market basis being 
driven by its past values with a unit root process. If noise trader risk is present, as in (4), the 
market basis is further driven by noise traders’ demand. Like the market basis, the calendar 
spread follows a unit root process under limits to spatial arbitrage with an addition noise 
component in (4). Several testable implications can hence be inferred from Table 1. If there 
are no limits to spatial arbitrage, the basis is driven solely by net-carry costs and futures and 
cash prices are cointegrated so that price dynamics can be expressed in an error correction 
decomposition. If limits to spatial arbitrage are present, the basis follows a random walk 
and the error correction coefficient is insignificant due to the break in the cointegrating 
relationship between cash and futures markets. If, further, noise trader risk is present, 
changes in the futures price are linked to speculative demand while the cash price remains 
unaffected by this demand as long as the elasticity of arbitrage is low.  

 
5 See for instance Low, et al. (2002) who impose a similar assumption.   
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Table 1. Spatial Arbitrage Regimes with and without Noise Trader Risk 
 (1) Effective spatial arbitrage, no 

noise trader risk 
(2) Limits to spatial arbitrage, no 

noise trader risk 
(3) Effective spatial arbitrage, noise 

trader risk 
(4) Limits to spatial arbitrage, noise 

trader risk 

! ! → ∞ ! → 0 ! → ∞ ! → 0 

% % = 0, ' = 1 % = 0, ' = 1 0 < % < 1 0 < % < 1 

*, , lim
!→#

* = 0$ ,	 
lim
!→#

, = 0% 
lim
!→&

* = 0,	 
lim
!→&

, = 0 

lim
!→#

* = 0$ ,	 
lim
!→#

, = 0% 
lim
!→&

* = 0,	 
lim
!→&

, = 0 

2 2% = 0, 2$ = 0 2% = 0, 2$ = 0 2 = 2% = 2$ = 0$% 2% = 0, 2$ = % 

3' 3' = [0%3'() +0$(7'() − 9)̅] +
∆>' +?'%*  

3' = 3'() + ∆>' +?'% 3' = [0%3'() +0$(7'() − 9)̅] +
(1 − 2)∆>' + 2∆@' +?'%*  

3' = 3'() + ∆>' +?'% 

7' 7' = [0%(3'() + 9̅) + 0$7'()] +
∆>' +?'$*  

7' = 7'() + ∆>' +?'$ 7' = [0%(3'() + 9̅) + 0$7'()] +
(1 − 2)∆>' + 2∆@' +?'$*  

7' = 7'() + (1 − %)∆>' + %∆@' +
?'$  

∆3' ∆3' = 0$A'() + ∆>' +?'%* ∆3' = ∆>' +?'% ∆3' = 0$A'() + (1 − 2)∆>' +
2∆@' +?'%*  

∆3' = ∆>' +?'% 

∆7' ∆7' = −0%A'() + ∆>' +?'$* ∆7' = ∆>' +?'$ ∆7' = −0%A'() + (1 − 2)∆>' +
2∆@' +?'$*  

∆7' = (1 − %)∆>' + %∆@' +?'$ 

B'  B' = 0$B'() +0%9̅ + ?'+  B' = B'() +?'+  B' = 0$[B'() + (%) − %,)(∆@' −
∆>')] + 0%9̅ + ?'+  

B' = B'() + (%) − %,)(∆@' −
∆>') + ?'+  

,' ,' = −9̅ + ?'- ,' = ,'() +?'- ,' = −9̅ + ?'- ,' = ,'() + %(∆>' − ∆@') + ?'- 

Notes: Recall, 2% = *%, 2$ = (1 − ,)%, ?'%* = ?'% + *(?'$ −?'% −?'.), and ?'$* = ?'$ − ,(?'$ −?'% −?'.). Weights 0$ = C$ (C% +C$)⁄  and 0% =
C% (C% +C$)⁄  and hence 0% = 1 − 0$. Past error A'() ≡ 7'() − 3'() − 9̅. Market basis ,' ≡ 3' − 7'. Calendar spread B' ≡ 7','0, − 7','0) so that F = 1 for 
simplicity and %) and %, being the share of noise traders in the deferred and the near to maturity futures contract respectively. 
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3. Data and Methodology 

3.1 Methodology 

Before testing the derived hypotheses, several considerations with regards to the 
specification of the net-carry costs need to be addressed. Previous studies suggest that net-
carry costs could be non-stationary due to a root component in the convenience yield or 
interest rate or both, e.g. Figuerola-Ferretti and Gonzalo (2010) and Brenner and Kroner 
(1995). Settling the question empirically is difficult as of the three components constituting 
net-carry costs, convenience yield is latent, while storage cost data is difficult to obtain. An 
elegant solution was proposed by Figuerola-Ferretti and Gonzalo (2010) who suggest 
modelling the convenience yield as a linear function of cash and futures prices. The model 
rests on the assumption of mean reversion of interest rate and storage costs, so that !! = !̅ +

%(0), and )! = )* + %(0). With the convenience yield being defined as +! = ,"-! − ,#/!, 
net-carry costs are specified as 0! = !)1111 − ,"-! + ,#/! . However, the mean reversion of 
interest rate and storage costs might not be supported empirically. 

I suggest an alternative approach that involves modelling storage costs and 
convenience yield as a function of level of inventory. The relationship between inventory 
and convenience yield is theoretically and empirically confirmed by Pindyck (2001), Bozic 
and Fortenbery (2011) and Pirrong (2011). Following this approach, )!(%!) = )$ + ,#

%
%! 

and +!(%!) = +$ − ,#
%%
%!, so that 0! = ()$ + +$) + ,"!! + ,#%!, with convenience yield 

being inversely related to inventory and storage cost being positively related to inventory, 
which means 0! is increasing with %!, with ,# = ,#

%
+ ,#

%%. Both decompositions of net-carry 
costs can be incorporated into Eq. (8), so that the long-run disequilibrium error 3! is 
specified as in Eq. (9). 

3! = (1 − ,#) 5/! −
(1 − ,")
(1 − ,#)

-! −
!)1111

(1 − ,#)
6 (9a) 

3! = /! − -! − ,"!! − ,#%! + (+$ −)$) (9b) 

The combination of Eq. (9) and Eq. (8) can be generalised into Eq. (10), with 
7&~%%9(:, Ω), = = >?′ and ? being the cointegrating vector with ?%A&~B(:), A& being the 
vector of long-run variables, that is cash and futures prices and net-carry costs and C&~B(:) 
being a set of additional explanatory variables such as changes in fundamental and 
speculative information.  

∆A& = =A&'( +E F)C&')
*

+,$
+E G-∆A&'-

.

/,"
+7&	 (10) 

Eq. (10) is evaluated by estimating the cointegrating rank following Johansen (1988, 
1991) to gain insight into the elasticity of spatial arbitrage I and by testing for the 
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significance of information changes in the short-run approximated by trader position 
indicators.  

In a second step, implications for the market basis are tested by use of a regime 
switching model (Hamilton 2008). Following Table 1, the four regimes can be collapsed 
into two regimes for the market basis. Under regimes (1–3) the first difference of the basis 
follows a white noise process, while under regime (4) the basis follows the difference of 
fundamental and speculative information weighted by the share of uninformed traders in 
the market as specified in Eq. (11):  

∆J! = K
!!
"1 																																						(1– 3)

(L∆*! − ∆,!M + !!
"2 										(4)

 (11) 

The regime-switching regression is specified in Eq. (12), with N! being a random 
variable that assumes values N! = 1 or N! = 2 to differentiate between regimes (1–3) and 
regime (4) in Eq. (11). The probabilistic model of what causes the change from N! = 1 to 
N! = 2 is based on a two-state Markov chain with constant regime-switching probabilities. 
The set of explanatory variables, C& is defined as in Eq. (10). Lagged values of ∆J! are added 
to control for autocorrelation in the residuals. Coefficients for lagged values are fixed, while 
the remaining coefficients can vary across regimes.   

∆J! = P0#
%
C& +)!

1 (12) 

However, Eq. (11) and the differentiation of the two regimes only holds if net-carry 
costs are mean reverting so that 0! = 0!'" = 0̅. Given the above considerations summarized 
in Eq. (9), two alternatives corresponding to regime (1) and (3) are considered as a 
potentially third regime in Eq. (11): 

∆J! = ,"∆-! − ,#∆/! +)!
1$ (13a) 

∆J! = −,"∆!! − ,#∆%! +)!
1$%  (13b) 

," = ,# = 1 in Eq. (13a) is implicitly imposed by construction of the market basis. 
Hence, accounting for the regime as specified in Eq. (13a) is not useful. Instead I incorporate 
∆/! into the regime switching regression Eq. (12) to allow for deviations from	1. The two 
competing strategies for modelling net-carry costs in Eq. (9) and Eq. (13) are used 
throughout. However, the second strategy is constraint by data availability and results 
largely confined to the appendix.  

3.2 Data 

Commodity prices are obtained from Thomson Reuters Datastream. Following 
Geman and Sarfo (2012), the futures price is constructed as a weighted average of all 
simultaneously traded contracts. Each contract is weighted by its share in total open interest. 
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This way Q is held relatively constant over time which avoids cyclical contraction of carry 
variables due to maturity cycles.  

The approximation of informed and uninformed traders’ demand is challenging. We 
follow several empirical studies in using position data provided by the US Commodity 
Futures Trading Commission (CFTC), weekly Commitments of Traders Supplemental 
(CIT) Report; e.g. Irwin and Sanders (2010; 2012), Mayer (2012), Silvennoinen and Thorp 
(2013), and Singleton (2014). The CFTC CIT report differentiates between long and short 
positions of commercial traders, index or portfolio insurance traders, non-commercial 
traders and small non-reporting traders. CFTC position data faces several shortcomings 
discussed elsewhere in the literature; e.g. Irwin and Sanders (2012). It is important to note 
here that the division of trader types is based on industry affiliation and not trading strategy. 
The information content of a trade cannot be observed, and we can only assume that 
commercial traders on average base their positioning on market fundamentals while index 
or portfolio insurance traders on average base their positioning on non-fundamental 
information. Against this conjecture, position change indicators are constructed for the 
commercial and index trader categories by dividing the respective net long positions (long 
minus short positions) by total open interest. The 3-month LIBOR rate, obtained from 
Thomson Reuters Datastream, is used as an approximation for interest rate. 

The paper focuses on grains and soft commodities which are storable. However, only 
for soft commodities data on inventories at exchange registered warehouses is available in 
weekly frequency. As for the price data, inventory data is obtained via Thomson Reuters 
Datastream. Weekly trader position data is available from the first week of 2006, while 
weekly inventory data for cocoa, coffee and cotton is available from 2010 week 32, 2011 
week 2 and 2008 week 44 respectively. The samples used in this study end in 2016 week 
29.  

4. Empirical Results  

4.1 Model Estimation 

Price variables and interest rate are found non-stationary and I(1), while inventory 
data is found weakly stationary for cocoa and cotton, but not for coffee; see Appendix Table 
A1. Having established the order of integration, the cointegrating rank is evaluated by the 
Johansen (1988) trace test. The test is conducted with correspondence to the cointegrating 
vector ? in Eq. (10). Commodity futures and cash markets are found to be strongly 
cointegrated except for wheat where cointegration is weaker; see Table 2. Results for the 
trace test do not change if considering inventory and interest rate in line with Eq. (9b) 
whereby interest rate is restricted to be exogeneous; see Appendix Table A2. 
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Table 2. Trace Test /& , 1&  
 Wheat (10) Corn (8) Soy (7) Cocoa (4) Coffee (1) Cotton (4) 
2': 4 ≤ 0  18.669 

[0.081] 
27.161 
[0.004] ** 

32.385 
[0.000] ** 

24.930 
[0.009] ** 

32.153 
[0.000] ** 

28.733 
[0.002] ** 

2': 4 ≤ 1  7.3573 
[0.111] 

6.1318 
[0.187] 

5.8255 
[0.212] 

6.5158 
[0.159] 

4.6194 
[0.339] 

3.7936 
[0.456] 

Notes: Lags in parentheses selected by Akaike information criterion. Constant included in the 
cointegration relationship. P-values in brackets. * indicating 5% and ** indicating 1% significance level. 
Data from 2006:W01 to 2016:W29 in weekly frequency. 

I replicate the derivation of the convenience yield from the cointegrating vector by 
Figuerola-Ferretti and Gonzalo (2010). In line with observations made by Figuerola-Ferretti 
and Gonzalo (2010) for metal markets the cointegrating vectors deviate from the standard 
(1, −1) with ,R" < −1 for most markets, which indicates that backwardation prevails with 
a small unit root process in the net-carry variables; see Table 3. The deviation from unity is 
statistically significant for corn, soybeans, coffee and cotton. Dolatabadi, et al. (2015) 
present similar findings and account for the remaining unit root process by allowing for 
long memory in the equilibrium error. Interestingly, the unit root vanishes after addition of 
the observed carry variables in line with Eq. (9b); see Appendix Table A3. The findings 
suggest that the long memory component is in interest rate and inventory rather than 
convenience yield. 

Table 3. Cointegrating Vector [/& − 8' − 8(1&] Eq. (10) with Eq. (9a) 
 8:'  s.e. 8:(  s.e. 2': 8( = 1†  
Wheat (10) -0.0378  [0.9962] -0.9768  [0.1553] 0.0079 (0.9292) 
Corn (8)  1.6255  [0.2878] -1.2561  [0.0470] 11.392 (0.0007)** 
Soy (7)  0.3795  [0.0920] -1.0517  [0.0132] 8.2781 (0.0040)** 
Cocoa (4)  0.1012  [0.2597] -1.0280  [0.0331] 0.4812 (0.4879) 
Coffee (1)  0.7191  [0.2086] -1.1283  [0.0415] 6.6131 (0.0101)* 
Cotton (4)  0.6410  [0.1047] -1.1483  [0.0244] 13.579 (0.0002)** 
Notes: Lag length in parenthesis determined by AIC (left column). Standard errors in brackets. †test 
statistic following a Chi-square distribution with one degree of freedom under the null; p-values in 
parenthesis. * indicating 5% and ** indicating 1% significance level. Data from 2006:W01 to 2016:W29 
in weekly frequency. 

I further follow Gonzalo and Granger (1995) in identifying the leading market in the 
price formation process by testing restrictions on T2% . Table 4 reports tests on the T2%  derived 
from > in Eq. (10) to identify which market is leading the price formation process. Results 
suggest that the futures market is leading in most cases. The evidence is less conclusive for 
grains than for soft commodities and inconclusive for wheat and corn markets, related to 
the relatively weak cointegration relationships between futures and cash markets. Tests on 
T2
%  imply test for weak exogeneity. For Eq. (10) with the long-run specification Eq. (9b) the 

lead-lag relationship cannot be clearly identified due to the potential endogeneity of the 
inventory market. Indeed, tests on > suggest that both cash and futures price are weakly 
exogenous, except for the cocoa market, where futures prices and inventory are found 
weakly exogenous; see Appendix Table A4. 
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Table 4. Test for leading market using <)*  for (10) with (9a) 
 /& 1& <)*  2': <)* = (1,0) †  2': <)* = (0,1) † 
Wheat (10) 
 

-0.0302 
[0.0203] 

0.0047 
[0.0152] 

(0.1344, 0.8656) 0.8014  
(0.3707) 

0.0348 
(0.8520) 

Corn (8) 
 

-0.0126 
[0.0343] 

0.0330 
[0.0296] 

(0.7245, 0.2755) 0.0988 
(0.7533) 

0.9159  
(0.3386) 

Soy (7) 
 

-0.1863 
[0.0845] 

0.0070 
[0.0880] 

(0.0362, 0.9638) 9.2955 
(0.0023)** 

0.0051 
(0.9431) 

Cocoa (4) 
 

-0.0803 
[0.0440] 

0.0599 
[0.0492] 

(0.4274, 0.5726)  2.1833  
(0.1395) 

0.9770  
(0.3230) 

Coffee (1) 
 

-0.0801 
[0.0331] 

0.0054 
[0.0319] 

(0.0629, 0.9371) 4.8895  
(0.0270)* 

0.0239  
(0.8772) 

Cotton (4) 
 

-0.1262 
[0.0575] 

0.0074 
[0.0483] 

(0.0552, 0.9448) 4.1316  
(0.0421)* 

0.0201  
(0.8874) 

Notes: <)* = (0,1) implies the futures market is leading the price discovery process and <)* = (1,0) 
implies the cash market is leading the price discovery process. <)* =
(<+ (−<( + <+)⁄ , −<( (−<( + <+)⁄ ). Lag length in parenthesis determined by AIC (left column). 
Standard errors in brackets. † Test statistic following a Chi-squared distribution with two degrees of 
freedom under the null; p-values in parenthesis. * indicating 5%  and ** indicating 1% significance level. 
Data available from 2006: W01 to 2016: W29 in weekly frequency. 

Table 5 reports the coefficients on the information shocks. Estimations are based on 
single equation error correction models. Position data is found significant with regards to 
price impulses induced by informed commercial hedgers and uninformed impulses by index 
traders for most markets. This effect is more pronounced in the futures than the cash market 
as predicted under imperfect spatial arbitrage. For all but the wheat, corn and coffee market, 
position changes are significantly related to changes in the cash as well as futures prices. 
For soybeans and cotton, for which the futures market was found to be leading the price 
formation process, the effect of trader position changes on the cash market price are 
strongest. Results in Table 5 are based on the full sample averages and ignore the possibility 
of shifts between different regimes as suggested in Table 1. In the following section, regime 
shifts are incorporated in form of a Markov regime switching model.   

Table 5a. Trader Position Indicators Eq. (10) with Eq. (9a) 
 Cash market /& Futures market 1& 
 ∆*&  ∆,&  ∆*&  ∆,&  
Wheat (4,4)  0.0068 

[0.0392] 
-0.0668 
[0.0657] 

-0.0250 
[0.0285] 

 0.0436 
[0.0477] 

Corn (7,7) 
 

 0.0078 
[0.0177] 

 0.0075 
[0.0300] 

-0.0323** 
[0.0158] 

-0.0118 
[0.0315] 

Soy (4,5)  0.0514** 
[0.0254] 

 0.0041 
[0.0398] 

-0.1006*** 
[0.0249] 

-0.0527 
[0.0328] 

Cocoa (4,4) 
 

-0.0298* 
[0.0161] 

 0.0268 
[0.0438] 

 0.0135 
[0.0162] 

-0.0212 
[0.0480] 

Coffee (5,5) 
 

-0.0150 
[0.0156] 

-0.0161 
[0.0284] 

-0.0050 
[0.0163] 

 0.0053 
[0.0276] 

Cotton (1,1) 
 

 0.0185* 
[0.0106] 

 0.0422 
[0.0342] 

-0.0238** 
[0.0102] 

-0.0577* 
[0.0305] 
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Table 5b. Trader Position Indicators Eq. (10) with Eq. (9b) 
 Cash market /&  Futures market 1&  
 ∆*&  ∆,&  ∆*&  ∆,&  
Cocoa (2,2) 
 

-0.0530** 
[0.0243] 

 0.1432 
[0.0799] 

 0.0660** 
[0.0302] 

-0.2716*** 
[0.0759] 

Coffee (2,3) 
 

 0.0130 
[0.0161] 

 0.0131 
[0.0283] 

-0.0246 
[0.0172] 

 0.0019 
[0.0267] 

Cotton (0,1) 
 

 0.0303** 
[0.0143] 

-0.0183 
[0.0507] 

-0.0381** 
[0.0159] 

-0.0448 
[0.0421] 

Notes: Lag length in parenthesis chosen by general to specific modelling. Heteroscedasticity robust 
standard errors in brackets. * indicating 1%, ** indicating 5%  and *** indicating 1% significance level.  

4.2 Test for Regime Shift 

Regression results for the regime switching model as specified in Eq. (12) are 
summarized in Table 6. For most commodities only two statistically distinct regimes can be 
identified instead of three. Hence, Eq. (12) incorporating Eq. (13a) is estimated with two 
regimes instead of three.  

Table 6. Markov Switching Regime Eq. (12)  
 Wheat (4) Corn (2) Soy (4) Cocoa (6) Coffee (7) Cotton (1) 

Regime 1 
∆1&   0.125***  0.116*** -0.016 -0.065*** -0.032  0.163*** 
 [0.0294] [0.0137] [0.0156] [0.0208] [0.0249] [0.0173] 
∆*&   0.062*  0.021 -0.016  0.005 -0.0002  0.010 
 [0.0362] [0.0154] [0.0112] [0.0128] [0.0176] [0.0107] 
∆,&   0.076 -0.008 -0.001  0.038 0.015  0.026 
 [0.0528] [0.0299] [0.0156] [0.0352] [0.0285] [0.0225] 

Regime 2 
∆1&  -0.285** -0.899*** -0.795*** -1.057*** -0.430*** -0.617*** 
 [0.1298] [0.0682] [0.0380] [0.0352] [0.0690] [0.0593] 
∆*&  -0.770** -2.426*** -0.266*** -0.095*** -0.305*** -0.109 
 [0.3101] [0.1772] [0.0679] [0.0186] [0.0737] [0.0736] 
∆,&  -1.079*** -1.800*** -0.313*** -0.149*** -0.401*** -0.122* 
 [0.2185] [0.1162] [0.0802] [0.0381] [0.0872] [0.0690] 

Transition Probabilities 
P11-C  3.903*** -4.446*** -3.150*** -2.295*** -2.553*** -3.115*** 
 [0.3678] [0.4568] [0.3402] [0.2603] [0.3125] [0.4460] 
P21-C  1.314*  0.714 -0.845  1-371***  1.075** -0.312 
 [0.7396] [0.5530] [0.5645] [0.2682] [0.5160] [0.6132] 
i=1 j=1 0.9802 0.9884 0.9589 0.9085 0.9278 0.9575 
i=1 j=2 0.0198 0.0116 0.0411 0.0915 0.0722 0.0425 
i=2 j=1 0.7882 0.3287 0.6996 0.2025 0.2545 0.5773 
i=2 j=2 0.2118 0.6713 0.3004 0.7975 0.7455 0.4227 
Duration 1 50.571 82.250 24.335 10.925 13.850 23.536 
Duration 2 1.2688 3.0421 1.4294 4.9387 3.9291 1.7323 
Notes: Lag length in parenthesis decided by AIC. c is a constant; * for 10 %, ** for 5%, and *** for 1% 
significance level. Standard errors in brackets; constant transition probabilities: P(i, k) = P(ζ(t) = k | ζ(t-1) 
= i); Duration is the constant expected duration for regime 1 and 2.  

I find that Regime 2, for which the coefficients for trader positions are significant, is 
of much shorter duration, spanning one to five weeks only, than the prevailing Regimes 1. 
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Further, Regime 2 is only significant for wheat, cocoa and coffee. Comparing results in 
Table 6 with regimes identified in Table 1, I find that regimes (4) and (2) in their strong 
form of zero elasticity to arbitrage do not exist as evident from the significant coefficient 
for ∆/! in both regimes identified by the regime switching model. Regime 1 corresponds to 
a mix of regimes (1) and (2) in Table 1 and is associated with contango. Regime 2 
corresponds to a mix of regimes (3) and (4) in Table 1 and is associated with backwardation. 
Further, coefficients for trader positions are predominantly negative indicating that these 
are associated with the market moving further into backwardation. These findings support 
the hypothesis that net-long positions contribute to backwardation through a positive price 
effect on the futures contract; e.g. see Irwin and Sanders (2012). Our findings are broadly 
confirmed if using the alternative specification of net-carry costs following Eq. (13b), but 
coefficients are less robust to lag length selection; see Appendix Table A5.    

5. Conclusion  

The paper derives a model of price discovery in commodity markets that accounts for 
limits to arbitrage in two forms: limits to spatial arbitrage and limits to fundamental 
arbitrage. Limits to spatial arbitrage arise over transaction costs involved in the process of 
trading in commodity futures or cash markets. If transaction costs are significant, the 
elasticity of arbitrage is limited. Limits to fundamental arbitrage arise if systematic noise 
traders are present in the market which induce price deviations from market fundamentals 
in the short-run.  

It is shown that under these assumptions the relationship between cash and futures 
markets depends on the elasticity of arbitrage and the weight of uninformed traders in the 
market. Four different market regimes are identified: (1) effective arbitrage and no noise 
trader risk, (2) limits to arbitrage and no noise trader risk, (3) effective arbitrage and noise 
trader risk and (4) limits to arbitrage due to both transaction cost and noise trader risk. It is 
shown that, firstly, price levels and changes are driven by both changes in market 
fundamentals and changes in speculative demand under the latter two regimes. Speculative 
demand spills over to the cash market if spatial arbitrage is effective but is restricted to the 
futures market if spatial arbitrage is limited. Secondly, if spatial arbitrage is limited the 
cointegrating relationship between cash and futures prices breaks and the market basis 
follows a random walk process. If further, noise trader risk is present, the market basis is 
also driven by speculative demand. 

Empirical results largely confirm the model’s predictions. Findings suggest that 
regime (4) with zero elasticity to arbitrage and noise trader risk is rare and short lived. 
However, a variation of regime (3) with imperfect elasticity to arbitrage and some noise 
trader risk prevails in most markets, which means that noise trader risk is more prevalent in 
the futures market than in the cash market. 

The model and empirical evidence presented in this paper imply that the price 
discover process of commodity futures markets is affected by the presence of noise traders. 
The strength of the effect in both futures and cash markets depends on the relative market 
weight of noise traders in the futures markets and the elasticity of arbitrage. If the elasticity 
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of arbitrage between cash and futures markets is high, price impulses by noise traders are 
likely to spill over to the cash market. If the elasticity of arbitrage is low, noise trader risk 
is revealed in an excessive market basis.  
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6. Appendix 

6.1 Garbade and Silber (1983) Synopsis 

Let U/,! and U+,! be the positions of the ith and jth trader in the cash and futures market 
respectively, !/,! the ith trader’s reservation price in the cash market and !+,! the jth trader’s 
reservation price in the futures market.	I is elasticity of spatial arbitrage and V is elasticity 
of demand with V > 0,I > 0.  

Eq. (A1a-c) summarise the demand schedule for the ith trader participating in the cash 
market (1a), for the jth trader participating in the futures market (1b) and for the arbitrage 
traders active in both the cash and futures market (1c). Note that (/! − -! − 0!) is the 
disequilibrium error from the arbitrage condition Eq. (2).  

U/,! − V(-! − !/,!) (A1a) 

U+,! − V(/! − !+,!) (A1b) 

±I(/! − -! − 0!) (A1c) 

The market clearing condition in the cash market is summarised in Eq. (A2) with	Y =
1,… ,[4 and [4 number of traders in the cash market. 

EU/,!

5,

/,"
=E\U/,! − V(-! − !/,!)]

5,

/,"	
+ I(/! − -! − 0!) (A2) 

In correspondence to Eq. (A2), market clearing condition in the futures markets are 
summarised in Eq. (A3) with ^ = 1,… ,[7 and [7 number of traders in the futures market. 

EU+,!

5-

+,"
= E\U+,! − V(/! − !+,!)]

5-

+,"	
− I(/! − -! − 0!) (A3) 

Eq. (A2) and Eq. (A3) can be solved for /! and -! with the reservation prices being 
expressed as the average reservation price of [4 and [7 traders in the respective markets so 

that !!4 = [4'" ∑ !/,!
5,
/,"  and !!

7
= [7

'"
∑ !+,!
5-
+," . 

-! =
`1 + a

I

V[7
bc !!4 + d

I

V[4
e (!!

7
− 0!)

1 + a
I

V[7
b + d

I

V[4
e

 (A4) 
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/! =
f1 + d

I

V[4
eg !!

7
+ a

I

V[7
b (!!4 + 0!)

1 + a
I

V[7
b + d

I

V[4
e

 

Eq. (A4) can be simplified into Eq. (A5), corresponding the Eq. (4). According to Eq. 
(A5) commodity futures and cash price are a function of the average reservation prices, net 

carry costs and the parameters h and J defined as: h = d
8
95,
e / `1 + d

8
95,
e + a

8
95-

bc and 

J = a
8
95-

b / `1 + d
8
95,
e + a

8
95-

bc.  

-! = (1 − h)!!
4
+ h!!

7
− h0! 

/! = J!!
4
+ (1 − J)!!

7
+ J0! 

(A5) 

Several implications under different degrees of spatial arbitrage can be derived from 
Eq. (A5) as summarised in Table 1. Under limits to spatial arbitrage, the cash and futures 
price is equal to the respective average reservation price and the market basis is the 
difference of the two reservation prices. Under effective spatial arbitrage, cash and futures 
prices are the weighted averages of the reservation price of each market plus the net-carry 
costs and the market basis is equal to the net-carry costs in line with Eq. (2). 

Spatial Arbitrage Regimes 

 (1) Limits to spatial arbitrage (2) Effective spatial arbitrage 

2 2 → 0 2 → ∞ 

@, A lim
.→'

@ = 0, lim
.→'

A = 0 lim
.→0

@ = E1 , lim.→0
A = E2 

/& /& = 4&2 /& = E24&2 +E1(4&
1 − F&) 

1& 1& = 4&
1 1& = E14&

1 +E2(4&2 + F&) 

A& A& = 4&2 − 4&
1 A& = −F& 

Notes: Market basis A& ≡ /& − 1&. Weights E1 = H1 (H2 +H1)⁄  and E2 = H2 (H2 +H1)⁄  and hence E2 =
1 − E1. 
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6.2 Additional Tables 

 
Table A1. Augmented Dickey Fuller Test to Establish Order of Integration 

  I& ∆I& 
  c c & t c c & t 
Futures 1& Wheat -1.931 (0) -1.776 (0) -29.28** (0) -29.30** (0) 
 Corn -1.527 (5) -1.975 (5) -12.87** (4) -12.87** (4) 
 Soy -1.699 (2) -2.490 (2) -19.23** (1) -19.22** (1) 
 Cocoa -2.039 (3) -2.827 (3) -19.36** (2) -19.37** (2) 
 Coffee -1.267 (4) -2.173 (4) -16.43** (3) -16.42** (3) 
 Cotton -2.033 (2) -2.347 (2) -19.25** (1) -19.24** (1) 
Cash /& Wheat -2.263 (0) -2.659 (0) -30.81** (0) -30.81** (0) 
 Corn -1.561 (5) -1.999 (5) -13.02** (4) -13.02** (4) 
 Soy -1.582 (5) -2.237 (5) -13.99** (4) -13.99** (4) 
 Cocoa -2.116 (3) -2.670 (3) -19.13** (2) -19.15** (2) 
 Coffee -1.402 (0) -2.791 (0) -30.11** (0) -30.10** (0) 
 Cotton -2.005 (0) -2.331 (0) -28.89** (0) -28.87** (0) 
Inventory J& Cocoa* -4.634** (8) -4.585** (8) -6.168** (2) -4.471** (5) 
 Coffee† -0.895     (4) -0.329     (4) -4.028** (3) -4.589** (3) 
 Cotton‡ -4.090** (2) -4.291** (2) -9.438** (1) -9.438** (1) 
Interest 4& - -1.431 (2) -1.071 (2) -8.104** (5) -8.147** (5) 
Notes: Augmented Dickey Fuller Test with critical values 5% = -2.87, 1% = -3.44 with constant and no 
trend included (c) and 5% = -3.42, 1% = -3.97 with constant and trend included (c & t). H0: Time series 
has a unit root. * indicating 5% and ** indicating 1% significance level. Akaike Information Criteria (AIC) 
for choice of lag length (max 10 lags); lag length in parenthesis after the test statistic. Data available from 
*2010:W32, †2011:W02; ‡2008:W44. Remaining data from 2006:W01 to 2016:W29 in weekly frequency. 
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Table A2. Trace Test /& , 1& , J& with 4& treated as exogenous 

 Cocoa (2) * Coffee (3) † Cotton (2) ‡ 
2': 4 ≤ 0  38.264 

[0.021]* 
36.454 
[0.035]* 

44.859 
[0.003]** 

2': 4 ≤ 1  14.417 
[0.268] 

9.7462 
[0.669] 

18.511 
[0.085] 

2': 4 ≤ 2  5.4704 
[0.244] 

1.2308 
[0.905] 

4.8546 
[0.310] 

Notes: Lags in parentheses selected by Akaike information criterion. Constant included in the 
cointegration relationship. P-values in brackets. * indicating 5% and ** indicating 1% significance level. 
Data available from *2010:W32, †2011:W02; ‡2008:W44. Remaining data from 2006:W01 to 2016:W29 
in weekly frequency. 

 

 
Table A3. Cointegrating Vector [/& − 8' − 8(1& − 8+J& − 834&] Eq. (10) with Eq. (9b) 

 8:' 8:( 8:+ 8:3 2': 8( = 1† 
Cocoa (2) * 0.6385 

[0.4859] 
-1.1013 
[0.0597] 

0.0148 
[0.0106] 

0.0073 
[0.0216] 

1.8827 (0.1700) 

Coffee (3) † -0.0317 
[0.1006] 

-1.0031 
[0.0178] 

0.0084 
[0.0149] 

-0.0576 
[0.0194] 

0.0213 (0.8839) 

Cotton (2) ‡ 0.5352 
[0.1985] 

-1.1139 
[0.0480] 

0.2150 
[0.0496] 

0.0539 
[0.0280] 

2.5227 (0.1122) 

Notes: Lag length in parenthesis determined by AIC (left column). Standard errors in brackets. †test 
statistic following a Chi-square distribution with one degree of freedom under the null; p-values in 
parenthesis. * indicating 5% and ** indicating 1% significance level. Interest rate 4& restricted to be 
exogenous in 5b. Data available from *2010:W32, †2011:W02; ‡2008:W44 (left column). 

 

 
Table A4. Test for weak exogeneity using < for (10) with (9b) 

 /& 2': <( = 0  1& 2': <+ = 0 J& 2': <3 = 0 
Cocoa (2) * 
 

-0.1268 
[0.0410] 

7.4133** 
(0.0065) 

0.0772 
[0.0492] 

1.8565 
(0.1730) 

-0.2139 
[0.1853] 

0.8685 
(0.3514) 

Coffee (3) †  
 

-0.3974 
[0.1854] 

3.3839 
(0.0658) 

-0.1692 
[0.1809] 

0.6783 
(0.4102) 

-0.1778 
[0.0775] 

4.3135* 
(0.0378) 

Cotton (2) ‡ 
 

-0.0267 
[0.0367] 

0.3696 
(0.5432) 

-0.0222 
[0.0315] 

0.4016 
(0.5262) 

-0.1704 
[0.0341] 

12.134** 
(0.0005) 

Notes: Lag length in parenthesis determined by AIC (left column). Standard errors in brackets. Tests 
statistic on restrictions following Chi-squared distribution under the null hypothesis with one degree of 
freedom; p-values in parenthesis. * indicating 5%  and ** indicating 1% significance level. Data available 
from *2010:W32, †2011:W02; ‡2008:W44 (left column) to 2016:W29 in weekly frequency. 
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Table A5. Markov Switching Regime Eq. (12) 
 Cocoa (5) Coffee (5) Cotton (1) 
 Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error 

Regime 1 
∆4&  -0.120* 0.0631 -0.022 0.0326 -0.003 0.0187 
∆J&   0.038 0.0513 -0.043 0.0566 -0.005 0.0033 
∆*&  -0.022 0.0265  0.021 0.0149  0.0004 0.0137 
∆,&   0.171** 0.0724 -0.006 0.0258   0.012 0.0313 

Regime 2 
∆4&   0.312** 0.1498  0.754*** 0.1559 -0.713* 0.3948 
∆J&   0.040 0.1192  0.688*** 0.2666  0.051*** 0.0138 
∆*&  -0.178*** 0.0446 -0.462*** 0.0683  0.486*** 0.1342 
∆,&  -0.586*** 0.1149 -0.606*** 0.0857  0.961*** 0.1793 

Transition Probabilities 
P11-C  1.212*** 0.3656  2.955*** 0.4569  3.717*** 0.5054 
P21-C  1.511 1.4625  0.080 0.7778  0.826 1.2941 
i=1 j=1; i=2 j=2  0.7706 0.1807  0.9505 0.4799  0.9763 0.3046 
i=1 j=2; i=2 j=1  0.2294 0.8193  0.0495 0.5201  0.0237 0.6954 
Duration 1; 2  4.3597 1.2206  20.206 1.9228  42.136 1.4380 
Notes: Lag length in parenthesis decided by AIC. c is a constant; * for 10 %, ** for 5%, and *** for 1% 
significance level. Constant transition probabilities: P(i, k) = P(ζ(t) = k | ζ(t-1) = i); Duration is the constant 
expected duration for regime 1 and 2.  
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