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Price Discovery in Commodity Futures and Cash Markets with 

Heterogenous Agents  
 

Sophie van Huellen* 
 

 

 

Abstract  

 

The paper develops a price discovery model for commodity futures markets that accounts for 

two forms of limits to arbitrage caused by transaction costs and noise trader risk. Four market 

regimes are identified: (1) effective arbitrage, (2) transaction costs but no noise trader risk, (3) 

no transaction costs but noise trader risk and (4) both transaction costs and noise trader risk. It 

is shown that commodity prices are driven by both market fundamentals and speculative trader 

positions under the latter two regimes. Further, speculative effects spill over to the cash market 

under regime (3) but are confined to the futures market under regime (4). The model is 

empirically tested using data from six grain and soft commodity markets. While regime (4) is 

rare and short lived, regime (3) with some noise trader risk and varying elasticity of arbitrage 

prevails 
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I INTRODUCTION 

The de-regulation of US American commodity futures markets through the Commodity 

Futures Modernization Act of 2000 had a lasting effect on the number and composition of 

traders in these markets. Commodity markets have seen an unprecedented inflow of liquidity, 

some of which has been linked to innovations in trading instruments, such as commodity 

indices. The Dodd-Frank Act of 2010 again altered the regulative environment of commodity 

futures markets. The liquidity inflow was visibly curbed with regards to over-the-counter 

transactions, but the general interest in commodity derivatives did not fade completely (BIS 

2016). Both the volume and type of liquidity that entered commodity futures markets in the 

early 2000s triggered a debate around effects on price discovery mechanisms. Some welcomed 

the inflow as a trade facilitator while others feared potential price distortions.  

With the intention to explore the effects of novel trading instruments on price discovery 

mechanisms in commodity markets, this paper amends existing price discovery models by the 

assumption of heterogeneous agents. Building on the work by Garbade and Silber (1983) and 

Figuerola-Ferretti and Gonzalo (2010), a pricing model with transaction cost induced limits to 

arbitrage between cash and futures markets is develop. The model is then extended by the 

assumption of heterogeneous agents in the form of informed arbitrage traders and uninformed 

noise traders, following the tradition of De Long et al. (1990). Under these assumptions, the 

relationship between cash and futures markets depends on the elasticity of arbitrage and the 

weight of uninformed traders in the market. Four different market regimes are identified: (1) 

effective arbitrage, (2) transaction cost induced limits to arbitrage and no noise trader risk, (3) 

effective arbitrage between cash and futures markets and noise trader risk and (4) limits to 

arbitrage due to both transaction cost and noise trader risk. It is shown that, firstly, price levels 

and changes are driven by both changes in market fundamentals and changes in noise trader 

positions under the latter two regimes. Noise trader effects spill over to the cash market if 

arbitrage between cash and futures markets is effective but is confined to the futures market if 

arbitrage between the two markets involves transaction costs. Secondly, if transaction costs 

hinder arbitrage, cointegration between spot and futures prices breaks down and the market 

basis follows a random walk process. If further, noise trader risk is present, the market basis 

reflects speculative price impulses. 

The number of studies that theoretically explore the potential effects of heterogeneous 

traders on price discovery mechanisms in commodity futures markets is small yet growing. 
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Among notable contributions are studies by Basak und Pavlova (2016), Brunetti and Reiffen 

(2014), and Hamilton and Wu (2014, 2015). These authors build on the conjecture that the 

presence of noise traders, if acting systematic and not random, dilutes the market’s information 

content, therefore feeding unwarranted speculative bubbles. Especially institutional investors 

that diversify into commodity indices were under suspicion for introducing systematic price 

pressure unrelated to market fundamentals.1 This paper contributes to the growing literature, 

by development of a model that considers jointly the presence of institutional investors and 

limits to arbitrage. This contribution is particularly valuable as it formalises the link between 

index traders and an excessive market basis that was suggested for several US grain markets 

over recent years (Irwin, et al. 2011, Garcia, Irwin and Smith 2015, Van Huellen 2013).  

The empirical validity of the model is tested for six grain and soft commodity markets 

traded at the Chicago Board of Trade (CBT): soft red winter wheat, number two yellow corn, 

number one yellow soybeans, cocoa, coffee ‘c’, and number two cotton. Arbitrage 

effectiveness is found to be low for corn and wheat markets, where non-convergence linked to 

bottlenecks in the delivery system occurred over recent years (Garcia et al. 2015). Trader 

position data is found to have a significant effect on the price discovery process in the short 

run and feedback effects to cash markets are strongest for markets for which the futures market 

is leading the price discovery process and arbitrage is effective. The coincidence of noise trader 

risk and perfectly inelastic arbitrage, corresponding to regime (4), is rare and short lived if it 

occurs. However, evidence for noise trader risk is found in all six markets with varying 

elasticities to arbitrage resulting in spill-over effects to cash markets.   

The paper is structured in five parts. After this short introduction, the paper continues with 

the derivation of the price discovery model for commodity markets with heterogeneous agents 

and limits to arbitrage. The third part presents data and methodology for testing the model. The 

forth part reports empirical results and the fifth part concludes on the evidence.  

II A HETEROGENOUS TRADER MODEL  

The no-arbitrage condition between cash and futures prices is summarised in Eq. (1), with 

𝐹𝑡 being the futures price at time t with maturity date T, 𝑆𝑡 being the spot price at t, 𝑟𝑡 and 𝑤𝑡 

being continuously compounded risk free interest rate and storage costs over time 𝜏 = 𝑇 − 𝑡 

                                                           
1 See Gilbert (2008), Nissanke (2012) and Irwin and Sanders (2012) for a summary of the debate and see Irwin 

(2013), Cheng and Xiong (2014) and Fattouh et al. (2013) for a summary of the empirical literature. 
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and 𝑦𝑡 being the convenience yield; a utility based reward that accrues to the holder of 

inventories.  

𝐹𝑡,𝑇 = 𝑆𝑡𝑒
(𝑟𝑡+𝑤𝑡−𝑦𝑡)𝜏 (1) 

Taking logs of Eq. (1), with 𝜏 = 1 for simplicity, yields Eq. (2): 

𝑓𝑡,𝑡+1 = 𝑠𝑡 + 𝑟𝑡 + 𝑤𝑡 − 𝑦𝑡 (2) 

Interest rate and storage costs less convenience yield can be summarised as net-carry costs 

𝑐𝑡. 

𝑓𝑡,𝑡+1 = 𝑠𝑡 + 𝑐𝑡 (3) 

At maturity 𝜏 → 0 so that 𝑓𝑡,𝑡 = 𝑠𝑡  and market basis 𝑏𝑡 ≡ 𝑠𝑡 − 𝑓𝑡,𝑡 is 𝑏𝑡 = 0. Over a 

futures contract’s life cycle, the size of the convenience yield in relation to interest and storage 

costs determines whether net-carry costs are positive or negative and hence whether the market 

is in contango or backwardation, that is, the futures exceeds the cash, or the cash exceeds the 

futures prices. While the extent of backwardation has not a limit, a contango has its maximum 

in the carry cost proper (Lautier 2005). Hence, a negative basis cannot exceed 𝑟𝑡 + 𝑤𝑡, with 

𝑟𝑡, 𝑤𝑡 ≥ 0, while a positive basis depends on the ‘size’ of the convenience yield 𝑦𝑡. 

To understand market dynamics, it is useful to distinguish between two arbitrage 

mechanisms. Spatial arbitrage exploits deviations between spot and futures prices beyond the 

carry relationship. Fundamental arbitrage exploits deviations of price levels from the 

underlying fundamental value, but not necessarily relative prices. The former relies on 

arbitrage traders’ willingness to trade the derivative and the physical commodity. The latter 

relies on the assumption that traders in both futures and cash markets make decisions based on 

the same information set so that a common (information) factor drives both markets. The 

common factor implies cointegration of the two price-series if 𝑐𝑡~𝐼(0); see Granger (1986) 

and Gonzalo and Granger (1995). 
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[
𝑓𝑡
𝑠𝑡

] = [
𝐶
1
]𝜑𝑡 + [

𝑓𝑡
�̃�𝑡

] (4) 

With (1, −𝐶) being the cointegrating vector and 𝜑𝑡 the common factor, in our case the 

fundamental value. The reasonability of the assumption 𝑐𝑡~𝐼(0) is subject to debate. 

Figuerola-Ferretti and Gonzalo (2010) suggest that the convenience yield is non-stationary 

while Brenner and Kroner (1995) consider interest rates to be non-stationary. Both assumptions 

result in a rejection of 𝑐𝑡~𝐼(0). We will return to this this discussion in the following section. 

The two arbitrage mechanisms, spatial and fundamental arbitrage, ensure that market 

dynamics obey Eq. (3) and Eq. (4) respectively. We, firstly, assume limits to spatial arbitrage 

in the form of transaction costs which result in a finite elasticity of arbitrage and hence 

deviations from Eq. (3). Secondly, we add the assumption of limits to fundamental arbitrage 

due to noise trader risk, so that traders do not evaluate a commodity and its derivative based 

solely on 𝜑𝑡, which implies deviations from Eq. (4).   

These two forms of limits to arbitrage are stepwise incorporated into a behavioural model 

for agents in the futures and spot market. Let there be 𝑁𝑠 and 𝑁𝑓 traders in the spot and futures 

market. 𝐸𝑖,𝑡 and 𝐸𝑗,𝑡 are the positions of the ith and jth trader in the spot and futures market 

respectively. The market clearing condition in the spot market is summarised in Eq. (5) with, 

𝐻 being elasticity of spatial arbitrage, 𝐴 elasticity of demand, and 𝑟𝑖,𝑡 the ith trader’s reservation 

price with 𝐴 > 0,𝐻 > 0, 𝑖 = 1,… ,𝑁𝑠.2 

∑𝐸𝑖,𝑡

𝑁𝑠

𝑖=1

= ∑{𝐸𝑖,𝑡 − 𝐴(𝑠𝑡 − 𝑟𝑖,𝑡)}

𝑁𝑠

𝑖=1 

+ 𝐻(𝑓𝑡 − 𝑠𝑡 − 𝑐𝑡) (5) 

In correspondence to Eq. (5), market clearing condition in the futures markets are 

summarised in Eq. (6) with 𝑟𝑗,𝑡 being the jth trader’s reservation price and 𝑗 = 1,… ,𝑁𝑓. 

∑𝐸𝑗,𝑡

𝑁𝑓

𝑗=1

= ∑{𝐸𝑗,𝑡 − 𝐴(𝑓𝑡 − 𝑟𝑗,𝑡)}

𝑁𝑓

𝑗=1 

− 𝐻(𝑓𝑡 − 𝑠𝑡 − 𝑐𝑡) (6) 

                                                           
2 See Garbade and Silber (1983) for further details on the derivation of Eq. (5) and Eq. (6). 
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Eq. (5) and Eq. (6) can be solved for 𝑓𝑡 and 𝑠𝑡 with the reservation prices being expressed 

as the average reservation price of 𝑁𝑠 and 𝑁𝑓 traders in the respective markets so that 𝑟𝑡
𝑠 =

𝑁𝑠
−1 ∑ 𝑟𝑖,𝑡

𝑁𝑠
𝑖=1  and 𝑟𝑡

𝑓
= 𝑁𝑓

−1 ∑ 𝑟𝑗,𝑡
𝑁𝑓

𝑗=1
. 

𝑠𝑡 =

[1 + (
𝐻

𝐴𝑁𝑓
)] 𝑟𝑡

𝑠 + (
𝐻

𝐴𝑁𝑠
) (𝑟𝑡

𝑓
− 𝑐𝑡)

1 + (
𝐻

𝐴𝑁𝑓
) + (

𝐻
𝐴𝑁𝑠

)
 

𝑓𝑡 =

[1 + (
𝐻

𝐴𝑁𝑠
)] 𝑟𝑡

𝑓
+ (

𝐻
𝐴𝑁𝑓

) (𝑟𝑡
𝑠 + 𝑐𝑡)

1 + (
𝐻

𝐴𝑁𝑓
) + (

𝐻
𝐴𝑁𝑠

)
 

(7) 

Eq. (7) can be simplified into Eq. (8). According to Eq. (8) commodity futures and spot 

price are a function of the average reservation prices, net carry costs and the parameters 𝑎 and 

𝑏 defined as: 𝑎 = (
𝐻

𝐴𝑁𝑠
) / [1 + (

𝐻

𝐴𝑁𝑠
) + (

𝐻

𝐴𝑁𝑓
)] and 𝑏 = (

𝐻

𝐴𝑁𝑓
) / [1 + (

𝐻

𝐴𝑁𝑠
) + (

𝐻

𝐴𝑁𝑓
)].  

𝑠𝑡 = (1 − 𝑎)𝑟𝑡
𝑠 + 𝑎𝑟𝑡

𝑓
− 𝑎𝑐𝑡 

𝑓𝑡 = 𝑏𝑟𝑡
𝑠 + (1 − 𝑏)𝑟𝑡

𝑓
+ 𝑏𝑐𝑡 

(8) 

Several implications under different degrees of spatial arbitrage can be derived from Eq. 

(8). These are summarised in Table 1.  

Table 1. Spatial Arbitrage Regimes 

 (1) Limits to spatial arbitrage (2) Effective spatial arbitrage 

𝐻 𝐻 → 0 𝐻 → ∞ 

𝑎, 𝑏 lim
𝐻→0

𝑎 = 0, lim
𝐻→0

𝑏 = 0 lim
𝐻→∞

𝑎 = 𝜔𝑓 , lim
𝐻→∞

𝑏 = 𝜔𝑠 

𝑠𝑡 𝑠𝑡 = 𝑟𝑡
𝑠 𝑠𝑡 = 𝜔𝑠𝑟𝑡

𝑠 + 𝜔𝑓(𝑟𝑡
𝑓

− 𝑐𝑡) 

𝑓𝑡 𝑓𝑡 = 𝑟𝑡
𝑓
 𝑓𝑡 = 𝜔𝑓𝑟𝑡

𝑓
+ 𝜔𝑠(𝑟𝑡

𝑠 + 𝑐𝑡) 

𝑏𝑡 𝑏𝑡 = 𝑟𝑡
𝑠 − 𝑟𝑡

𝑓
 𝑏𝑡 = −𝑐𝑡  

Notes: Market basis 𝑏𝑡 ≡ 𝑠𝑡 − 𝑓𝑡. Weights 𝜔𝑓 = 𝑁𝑓 (𝑁𝑠 + 𝑁𝑓)⁄  and 𝜔𝑠 = 𝑁𝑠 (𝑁𝑠 + 𝑁𝑓)⁄  and hence 𝜔𝑠 = 1 −

𝜔𝑓. 
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Under limits to spatial arbitrage, the spot and futures price is equal to the respective 

average reservation price and the market basis is the difference of the two reservation prices. 

Under effective spatial arbitrage, cash and futures prices are the weighted averages of the 

reservation price of each market plus the net-carry costs and the market basis is equal to the 

net-carry costs in line with Eq. (3). 

By proposing a data generating process for the average reservation prices, a dynamic 

relationship between cash and futures markets can be derived. Let two trader types exist in the 

market. Informed traders who base their positions on information about market fundamentals 

𝛷 and uninformed traders who follow an impulse 𝛶 that is common among all uninformed 

traders but unrelated to market fundamentals. Only informed traders are present in the spot 

market, while both informed and uninformed traders are present in the futures market. This 

composition reflects the arrival of financial liquidity, channelled predominantly via indices, at 

commodity futures markets. Index positions are largely synchronised but unrelated to market 

fundamentals as their arrival is linked to global liquidity cycles and the roll-over of existing 

positions (Alam and Gilbert 2017). This justifies the assumption of a common impulse 𝛶. 

With the division between informed and uninformed traders, the reservation prices of the 

ith and jth trader in the spot and futures market are 𝑟𝑖,𝑡
𝑠 = 𝐸𝑖,𝑡[𝑠𝑡|𝛷𝑖] and 𝑟𝑗,𝑡

𝑓
= (1 −

𝛽){𝐸𝑗,𝑡[𝑓𝑡|𝛷𝑗]} + 𝛽{𝐸𝑗,𝑡[𝑓𝑡|𝛶𝑗]}, with 𝛶𝑗 ∈ 𝛶 and 𝛷𝑗 ∈ 𝛷 and with 𝛽 being the probability that 

the jth trader is an uninformed trader. Hence, if ∑𝐸𝑖,𝑡[𝑠𝑡|𝛷𝑖] =∑𝐸𝑗,𝑡[𝑓𝑡|𝛷𝑖] = 𝜑𝑡 and 

∑𝐸𝑗,𝑡[𝑓𝑡|𝛶𝑖] = 𝜗𝑡, the evolution of the average reservation prices can be expressed as in Eq. 

(9a), with the white noise components 𝑤𝑡~𝐼(0) being the sum of idiosyncratic errors.3 

𝑟𝑡
𝑠 = 𝜑𝑡 + 𝑤𝑡

𝑠 

𝑟𝑡
𝑓

= (1 − 𝛽)𝜑𝑡 + 𝛽𝜗𝑡 + 𝑤𝑡
𝑓
  

(9a) 

By rewriting 𝜑𝑡 = 𝜑𝑡−1 + ∆𝜑𝑡 and 𝜗𝑡 = 𝜗𝑡−1 + ∆𝜗𝑡 and assuming that each trader 

expects the last price to be the full information value so that 𝑠𝑡−1 and 𝑓𝑡−1 have to be the 

reservation prices immediately after the last clearing, it follows that 𝜑𝑡−1 = 𝜗𝑡−1 = 𝑓𝑡−1 for 

                                                           
3 Note that Eq. (9a) can be interpreted as factor decomposition, with common factor 𝜑𝑡. Under limits to spatial 

arbitrage 𝐻 = 0, Eq. (9a) is equivalent to Eq. (4) with (1 − 𝛽) = 𝐶 and 𝑠𝑡 = 𝑟𝑡
𝑠 , 𝑓𝑡 = 𝑟𝑡

𝑓
 if assuming 𝜗𝑡~𝐼(0). 
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the futures market and 𝜑𝑡−1 = 𝑠𝑡−1 for the cash market. Therefore, Eq. (9a) can be transformed 

into Eq. (9b).  

𝑟𝑡
𝑠 = 𝑠𝑡−1 + ∆𝜑𝑡 + 𝑤𝑡

𝑠 

𝑟𝑡
𝑓

= 𝑓𝑡−1 + (1 − 𝛽)∆𝜑𝑡 + 𝛽∆𝜗𝑡 + 𝑤𝑡
𝑓
 

(9b) 

To proceed with the dynamics of the model, assumptions on the data generating process 

of net-carry costs are necessary. For simplicity, we assume that net-carry costs follow a white 

noise process with 𝑐̅ being the mean net-carry costs.4 This assumption will be eased in the 

following section to allow for variations in the data generating process of the different variables 

constituting net-carry costs.  

𝑐𝑡 = 𝑐̅ + 𝑤𝑡
𝑐 (9c) 

Substituting Eq. (9) into Eq. (8) yields an error correction decomposition with the long run 

equilibrium error of Eq. (3) and short run shocks driven by traders’ price impulses.  

∆𝑠𝑡 = 𝑎(𝑓𝑡−1 − 𝑠𝑡−1 − 𝑐̅) + (1 − 𝑎𝛽)∆𝜑𝑡 + 𝑎𝛽∆𝜗𝑡 + 𝑤𝑡
𝑠′ 

∆𝑓𝑡 = −𝑏(𝑓𝑡−1 − 𝑠𝑡−1 − 𝑐̅) + (1 − (1 − 𝑏)𝛽)∆𝜑𝑡 + (1 − 𝑏)𝛽∆𝜗𝑡 + 𝑤𝑡
𝑓′

 

(10) 

If uninformed traders induce systematic price impulses, so that 𝐸[∆𝜗𝑡] ≠ 0, the effect of 

these traders on the price discovery process depends on the elasticity of spatial arbitrage 𝐻 and 

the weight of the futures market 𝑁𝑓 relative to the cash market 𝑁𝑠. Note that these impulses by 

noise traders only enter prices in the short run but not the long run.  

Table 2 distinguishes between four different arbitrage regimes: (1) effective spatial 

arbitrage and no noise trader risk, (2) limits to spatial arbitrage and no noise trader risk, (3) 

effective spatial arbitrage and noise trader risk and (4) limits to spatial arbitrage and noise 

trader risk. 

                                                           
4 See for instance Low et al. (2002) who impose a similar assumption.   
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Table 2. Spatial Arbitrage Regimes with and without Noise Trader Risk 

 (1) Effective spatial arbitrage, no noise 

trader risk 

(2) Limits to spatial arbitrage, no noise 

trader risk 

(3) Effective spatial arbitrage, noise 

trader risk 

(4) Limits to spatial arbitrage, noise 

trader risk 

𝐻 𝐻 → ∞ 𝐻 → 0 𝐻 → ∞ 𝐻 → 0 

𝛽 𝛽 = 0, 𝛼 = 1 𝛽 = 0, 𝛼 = 1 0 < 𝛽 < 1 0 < 𝛽 < 1 

𝑎, 𝑏 lim
𝐻→∞

𝑎 = 𝜔𝑓 ,  

lim
𝐻→∞

𝑏 = 𝜔𝑠 

lim
𝐻→0

𝑎 = 0,  

lim
𝐻→0

𝑏 = 0 

lim
𝐻→∞

𝑎 = 𝜔𝑓 ,  

lim
𝐻→∞

𝑏 = 𝜔𝑠 

lim
𝐻→0

𝑎 = 0,  

lim
𝐻→0

𝑏 = 0 

𝑠𝑡 𝑠𝑡 = [𝜔𝑠𝑠𝑡−1 + 𝜔𝑓(𝑓𝑡−1 − 𝑐̅)] +

∆𝜑𝑡 + 𝑤𝑡
𝑠  

𝑠𝑡 = 𝑠𝑡−1 + ∆𝜑𝑡 + 𝑤𝑡
𝑠 𝑠𝑡 = [𝜔𝑠𝑠𝑡−1 + 𝜔𝑓(𝑓𝑡−1 − 𝑐̅)] +

(1 − 𝜔𝑓𝛽)∆𝜑𝑡 + (𝜔𝑓𝛽)∆𝜗𝑡 + 𝑤𝑡
𝑠  

𝑠𝑡 = 𝑠𝑡−1 + ∆𝜑𝑡 + 𝑤𝑡
𝑠 

𝑓𝑡 𝑓𝑡 = [𝜔𝑠(𝑠𝑡−1 + 𝑐̅) + 𝜔𝑓𝑓𝑡−1] +

∆𝜑𝑡 + 𝑤𝑡
𝑓
  

𝑓𝑡 = 𝑓𝑡−1 + ∆𝜑𝑡 + 𝑤𝑡
𝑓
 𝑓𝑡 = [𝜔𝑠(𝑠𝑡−1 + 𝑐̅) + 𝜔𝑓𝑓𝑡−1] +

(1 − 𝜔𝑓𝛽)∆𝜑𝑡 + (𝜔𝑓𝛽)∆𝜗𝑡 + 𝑤𝑡
𝑓
  

𝑓𝑡 = 𝑓𝑡−1 + (1 − 𝛽)∆𝜑𝑡 + 𝛽∆𝜗𝑡 + 𝑤𝑡
𝑓
  

∆𝑠𝑡  ∆𝑠𝑡 = 𝜔𝑓𝑒𝑡−1 + ∆𝜑𝑡 + 𝑤𝑡
𝑠 ∆𝑠𝑡 = ∆𝜑𝑡 + 𝑤𝑡

𝑠 ∆𝑠𝑡 = 𝜔𝑓𝑒𝑡−1 + (1 − 𝜔𝑓𝛽)∆𝜑𝑡 +

(𝜔𝑓𝛽)∆𝜗𝑡 + 𝑤𝑡
𝑠  

∆𝑠𝑡 = ∆𝜑𝑡 + 𝑤𝑡
𝑠 

∆𝑓𝑡 ∆𝑓𝑡 = −𝜔𝑠𝑒𝑡−1 + ∆𝜑𝑡 + 𝑤𝑡
𝑓
 ∆𝑓𝑡 = ∆𝜑𝑡 + 𝑤𝑡

𝑓
 ∆𝑓𝑡 = −𝜔𝑠𝑒𝑡−1 + (1 − 𝜔𝑓𝛽)∆𝜑𝑡 +

(𝜔𝑓𝛽)∆𝜗𝑡 + 𝑤𝑡
𝑓
  

∆𝑓𝑡 = (1 − 𝛽)∆𝜑𝑡 + 𝛽∆𝜗𝑡 + 𝑤𝑡
𝑓
 

𝑏𝑡 𝑏𝑡 = −𝑐̅ + 𝑤𝑡
𝑏  𝑏𝑡 = 𝑏𝑡−1 + 𝑤𝑡

𝑏  𝑏𝑡 = −𝑐̅ + 𝑤𝑡
𝑏  𝑏𝑡 = 𝑏𝑡−1 + 𝛽(∆𝜑𝑡 − ∆𝜗𝑡) + 𝑤𝑡

𝑏 

Notes: Market basis 𝑏𝑡 ≡ 𝑠𝑡 − 𝑓𝑡. Weights 𝜔𝑓 = 𝑁𝑓 (𝑁𝑠 + 𝑁𝑓)⁄  and 𝜔𝑠 = 𝑁𝑠 (𝑁𝑠 + 𝑁𝑓)⁄  and hence 𝜔𝑠 = 1 − 𝜔𝑓. Past error 𝑒𝑡−1 ≡ 𝑓𝑡−1 − 𝑠𝑡−1 − 𝑐.̅ 
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If noise trader risk is present, as in (3) and (4), price levels and changes are driven by both 

changes in market fundamentals and changes in speculative demand. Speculative demand spills 

over to the cash market if spatial arbitrage is effective (3) but is restricted to the futures market 

if spatial arbitrage in limited (4). Further, if spatial arbitrage is limited, as in (2) and (4), the 

price levels are determined by the past settlement price of the respective markets resulting in 

the market basis being driven by its past values with a unit root process. If noise trader risk is 

present, as in (4), the market basis is further driven by speculative demand. 

Several testable implications can be inferred from Table 2. If there are no limits to spatial 

arbitrage, the basis is driven solely by net-carry costs and futures and cash prices are 

cointegrated so that price dynamics can be expressed in an error correction decomposition. If 

limits to arbitrage are present, the basis follows a random walk and the error correction 

coefficient is insignificant due to the break in the cointegrating relationship between spot and 

futures markets. If, further, noise trader risk is present, changes in the futures price are linked 

to speculative demand while the spot price remains unaffected by this demand as long as the 

elasticity of arbitrage is low. 

III DATA AND METHODOLOGY 

A. Methodology 

Before estimating Eq. (10), several considerations with regards to the variability of the 

weights 𝑎, 𝑏 and 𝛽 as well as the specification of the net-carry costs need to be addressed. 

Previous literature suggests that net-carry costs could be non-stationary due to a root 

component in the convenience yield or due to non-stationarity of interest rate or both 

(Figuerola-Ferretti and Gonzalo 2010, Brenner and Kroner 1995). If any component 

constituting the net-carry costs is non-stationary, the assumption 𝑐𝑡~𝐼(0) is invalid.  

This question could be empirically settled if the elements of the net-carry costs were 

observed. Recall from Eq. (2) and Eq. (3),  𝑐𝑡 = 𝑟𝑡 + 𝑤𝑡 − 𝑦𝑡. Of the three components, 

convenience yield is latent, while storage cost data is difficult to obtain. An elegant solution 

was proposed by Figuerola-Ferretti and Gonzalo (2010) who suggest modelling the 

convenience yield as a linear function of spot and futures prices. The model rests on the 

assumption of mean reversion of interest rate and storage costs, so that 𝑟𝑡 = �̅� + 𝐼(0), and 𝑤𝑡 =

�̅� + 𝐼(0). With the data generating process for the convenience yield being 𝑦𝑡 = 𝛾1𝑠𝑡 − 𝛾2𝑓𝑡, 
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net-carry costs are specified as 𝑐𝑡 = 𝑟𝑤̅̅̅̅ − 𝛾1𝑠𝑡 + 𝛾2𝑓𝑡. However, the mean reversion of interest 

rate and storage costs might not be supported empirically. 

Another approach involves modelling storage costs and convenience yield as a function of 

level of inventory. The relationship between inventory and convenience yield is theoretically 

and empirically confirmed by Pindyck (2001), Bozic and Fortenbery (2011) and Pirrong 

(2011). Following this approach, 𝑤𝑡(𝐼𝑡) = 𝑤0 + 𝛾2
′𝐼𝑡 and 𝑦𝑡(𝐼𝑡) = 𝑦0 − 𝛾2

′′𝐼𝑡, so that 𝑐𝑡 =

(𝑤0 + 𝑦0) + 𝛾1𝑟𝑡 + 𝛾2𝐼𝑡, with convenience yield being inversely related to inventory and 

storage cost being positively related to inventory, which means 𝑐𝑡 is increasing with 𝐼𝑡, with 

𝛾2 = 𝛾2
′ + 𝛾2

′′. Both decompositions of net-carry costs can be incorporated into Eq. (10). 

[
∆𝑠𝑡

∆𝑓𝑡
] = [

𝑎(1 − 𝛾2)

−𝑏(1 − 𝛾2)
] [1 −

(1−𝛾1)

(1−𝛾2)
−

𝑟𝑤̅̅ ̅̅

(1−𝛾2)
] [

𝑓𝑡−1

𝑠𝑡−1

1
] + [

1 − 𝑎𝛽
1 − (1 − 𝑏)𝛽

] ∆𝜑𝑡 +

[
𝑎𝛽

(1 − 𝑏)𝛽
] ∆𝜗𝑡 + [

𝑤𝑡
𝑠

𝑤𝑡
𝑓]  

(11a) 

[
∆𝑠𝑡

∆𝑓𝑡
] = [

𝑎
−𝑏

] [1 −1 −𝛾1 −𝛾2 (𝑦0 − 𝑤0)]

[
 
 
 
 
𝑓𝑡−1

𝑠𝑡−1
𝑟𝑡−1

𝐼𝑡−1

1 ]
 
 
 
 

+

[
1 − 𝑎𝛽

1 − (1 − 𝑏)𝛽
]∆𝜑𝑡 + [

𝑎𝛽
(1 − 𝑏)𝛽

] ∆𝜗𝑡 + [
𝑤𝑡

𝑠

𝑤𝑡
𝑓]  

(11b) 

The ECMs in Eq. (11) reflect two different modelling choices for the net-carry costs. One 

problem remains in the estimation of Eq. (11a-b), which is the potential shift of the weights 

underlying 𝑎, 𝑏 and 𝛽. Shifting weights imply parameter variance. A Markov regime switching 

model is suggested in order to account for the potential parameter invariance. Model 

specifications in Eq. (11) can be generalised into Eq. (12),  

∆𝒚𝒕 = 𝜫𝒚𝒕−𝟏 + ∑ 𝜹𝒋𝒛𝒕−𝒋

𝑟

𝑗=0
+ ∑ 𝝅𝒊∆𝒚𝒕−𝒊

𝑚

𝑖=1
+ 𝒘𝒕  (12) 

with 𝒘𝒕~𝐼𝐼𝐷(𝟎,Ω), 𝜫 = 𝜶𝜷′ and 𝜷 being the cointegrating vector with 𝜷′𝒚𝒕~𝑰(𝟎), 𝒚𝒕 being 

the vector of long run variables, that is spot and futures prices and net-carry costs and 𝒛𝒕~𝑰(𝟎) 
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being a set of additional explanatory variables such as changes in fundamental and speculative 

information.  

Eq. (12) is estimated starting with modelling the long run cointegrating relationship then 

incorporating short run information shocks reflected in changing trader positions and finally 

accounting for regime changes reflected in changing coefficient estimates. Six estimation steps 

are conducted: 1) estimation of the cointegrating rank following Johansen (1988, 1991); 2) 

estimation of the reduced rank VECM; 3) test for long-run backwardation following Figuerola-

Ferretti and Gonzalo (2010); 4) identification of the leading market in the price formation 

process by testing restrictions on 𝛼⊥
′  following Gonzalo and Granger (1995); 5) test for the 

significance of information changes approximated by trader position indicators; and 6) 

considering weight changes by estimation of a Markov regime switching model on the market 

basis.  

B. Data 

Commodity prices are obtained from Thomson Reuters. Following Geman and Sarfo 

(2012), the futures price is constructed as a weighted average of all simultaneously traded 

contracts. Each contract is weighted by its share in total open interest. This way 𝜏 is held 

relatively constant over time which avoids cyclical contraction of carry variables due to 

maturity cycles.  

The approximation of fundamental arbitrage and noise trader demand is challenging. We 

follow several empirical studies in using position data provided by the US Commodity Futures 

Trading Commission (CFTC), weekly Commitments of Traders Supplemental (CIT) Report—

e.g. Irwin and Sanders (2010; 2012), Mayer (2012), Silvennoinen and Thorp (2013), and 

Singleton (2014). The report differentiates between long and short positions of commercial 

traders, index or portfolio insurance traders, non-commercial traders and small non-reporting 

traders. CFTC position data faces several shortcomings discussed elsewhere in the literature; 

e.g. Irwin and Sanders (2012). It is important to note here that the division of trader types is 

based on industry affiliation and not trading strategy. The information content of a trade cannot 

be observed, and we can only assume that commercial traders on average base their positioning 

on market fundamentals while institutional investors and portfolio insurance traders on average 

base their positioning on non-fundamental information. Against this conjecture, position 

change indicators are constructed for the commercial and index trader categories by dividing 

the respective net long positions (long minus short positions) by total open interest. The 3-
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month LIBOR rate, obtained from Thomson Reuters, is used as an approximation for interest 

rate. 

The paper focuses on grains and soft commodities which are storable. However, only for 

soft commodities data on inventories at exchange registered warehouses is available in weekly 

frequency. As for the price data, inventory data is obtained via Thomson Reuters. Weekly 

trader position data is available from the first week of 2006, while weekly inventory data for 

cocoa, coffee and cotton is available from 2010 week 32, 2011 week 2 and 2008 week 44 

respectively. The samples used in this study end in 2016 week 29. Hence, Eq. (11b) is 

estimated, where at all possible, for a shorter time-period than Eq. (11a).  

IV EMPIRICAL RESULTS  

A. Model Estimation 

Price variables and interest rate are found non-stationary and I(1), while inventory data is 

found stationary for cocoa and cotton, but not for coffee.  

Table 3. Augmented Dickey Fuller Test to Establish Order of Integration 

  𝑥𝑡 ∆𝑥𝑡 

  c c & t c c & t 

Futures 𝑓𝑡 Wheat -1.931 (0) -1.776 (0) -29.28** (0) -29.30** (0) 

 Corn -1.527 (5) -1.975 (5) -12.87** (4) -12.87** (4) 

 Soy -1.699 (2) -2.490 (2) -19.23** (1) -19.22** (1) 

 Cocoa -2.039 (3) -2.827 (3) -19.36** (2) -19.37** (2) 

 Coffee -1.267 (4) -2.173 (4) -16.43** (3) -16.42** (3) 

 Cotton -2.033 (2) -2.347 (2) -19.25** (1) -19.24** (1) 

Cash 𝑠𝑡 Wheat -2.263 (0) -2.659 (0) -30.81** (0) -30.81** (0) 

 Corn -1.561 (5) -1.999 (5) -13.02** (4) -13.02** (4) 

 Soy -1.582 (5) -2.237 (5) -13.99** (4) -13.99** (4) 

 Cocoa -2.116 (3) -2.670 (3) -19.13** (2) -19.15** (2) 

 Coffee -1.402 (0) -2.791 (0) -30.11** (0) -30.10** (0) 

 Cotton -2.005 (0) -2.331 (0) -28.89** (0) -28.87** (0) 

Inventory 𝐼𝑡 Cocoa -4.634** (8) -4.585** (8) -6.168** (2) -4.471** (5) 

 Coffee† -0.895     (4) -0.329     (4) -4.028** (3) -4.589** (3) 

 Cotton‡ -4.090** (2) -4.291** (2) -9.438** (1) -9.438** (1) 

Interest 𝑟𝑡 - -1.431 (2) -1.071 (2) -8.104** (5) -8.147** (5) 

Notes: Augmented Dickey Fuller Test with critical values 5% = -2.87, 1% = -3.44 with constant and no trend 

included (c) and 5% = -3.42, 1% = -3.97 with constant and trend included (c & t). H0: Time series has a unit 

root. * indicating 5% and ** indicating 1% significance level. Akaike Information Criteria (AIC) for choice of 

lag length (max 10 lags); lag length in (.) after the test statistic.  Available from 2010-32; † available from 2011-

02; ‡ available from 2008-44. Remaining data spans from 2006-01 to 2016-29 in weekly frequency. 

 

Having established the order of integration, the cointegrating rank is estimated with help 

of Johansen (1988) trace test. The test is conducted with correspondence to the cointegrating 
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vector 𝜷 in Eq. (12). Interest rate is restricted to be exogeneous. Commodity futures and cash 

markets are found to be strongly cointegrated except for wheat where cointegration is weaker 

(Table 4a). If including inventory and interest rates, the finding of a single cointegrating vector 

does not change (Table 4b). 

Table 4a. Trace Test 𝑠𝑡 , 𝑓𝑡  

 Wheat (10) Corn (8) Soy (7) Cocoa (4) Coffee (1) Cotton (4) 

𝐻0:  

𝑟 ≤ 0  

18.669 

[0.081] 

27.161 

[0.004] ** 

32.385 

[0.000] ** 

24.930 

[0.009] ** 

32.153 

[0.000] ** 

28.733 

[0.002] ** 

𝐻0:  

𝑟 ≤ 1  

7.3573 

[0.111] 

6.1318 

[0.187] 

5.8255 

[0.212] 

6.5158 

[0.159] 

4.6194 

[0.339] 

3.7936 

[0.456] 

 

Table 4b. Trace Test 𝑠𝑡 , 𝑓𝑡 , 𝐼𝑡 and 𝑟𝑡 being treated as exogenous 

 Cocoa (2) Coffee (3) Cotton (2) 

𝐻0: 𝑟 ≤ 0  38.264 

[0.021]* 

36.454 

[0.035]* 

44.859 

[0.003]** 

𝐻0: 𝑟 ≤ 1  14.417 

[0.268] 

9.7462 

[0.669] 

18.511 

[0.085] 

𝐻0: 𝑟 ≤ 2  5.4704 

[0.244] 

1.2308 

[0.905] 

4.8546 

[0.310] 

Notes: Lags in (.) selected by AIC. Constant included in the cointegration relationship as suggested by Eq. (11a-

b). p-values in [.]. * indicating 5% and ** indicating 1% significance level. Interest rate 𝑟𝑡 restricted to be 

exogenous in 4b. 

 

The reduced rank model results for Eq. (11a) and Eq. (11b) are presented in Tables 5a-b. 

The system is restricted to one cointegrating relationship with interest rates being exogenous. 

In line with observations made for metal markets by Figuerola-Ferretti and Gonzalo (2010), 

cointegrating vectors deviate from the standard (1, −1) with �̂�1 < −1 for most markets, which 

indicates that backwardation prevails with a small unit root process in the net-carry variables. 

The deviation from unity is statistically significant for corn, soybeans, coffee and cotton. 

Interestingly, the unit root vanishes after addition of the remaining carry variables in 

confirmation of Eq. (11b). Dolatabadi et al (2015) account for the remaining unit root process 

by allowing for long memory in the equilibrium error by use of a fractional cointegration 

model. The findings here suggest that the long memory component is in fact due to model 

misspecification.  
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Table 5a. Cointegrating Vector [𝑠𝑡 − 𝛽0 − 𝛽1𝑓𝑡] 

 �̂�0 �̂�1 𝐻0: 𝛽1 = 1†  

Wheat (10) -0.037826 

[0.99616] 

-0.97676 

[0.15530] 

0.0079 (0.9292) 

Corn (8) 1.6255 

[0.28783] 

-1.2561 

[0.046965] 

11.392 (0.0007)** 

Soy (7) 0.37953 

[0.092002] 

-1.0517 

[0.013186] 

8.2781 (0.0040)** 

Cocoa (4) 0.10118 

[0.25967] 

-1.0280 

[0.033137] 

0.4812 (0.4879) 

Coffee (1) 0.71910 

[0.20855] 

-1.1283 

[0.041531] 

6.6131 (0.0101)* 

Cotton (4) 0.64104 

[0.10474] 

-1.1483 

[0.024432] 

13.579 (0.0002)** 

 

Table 5b. Cointegrating Vector [𝑠𝑡 − 𝛽0 − 𝛽1𝑓𝑡 − 𝛽2𝐼𝑡 − 𝛽3𝑟𝑡] 

 �̂�0 �̂�1 �̂�2 �̂�3 𝐻0: 𝛽1 = 1† 

Cocoa (2) 0.63852 

[0.48585] 

-1.1013 

[0.059723] 

0.01476 

[0.010561] 

0.00728 

[0.02160] 

1.8827 (0.1700) 

Coffee (3) -0.031691 

[0.10056] 

-1.0031 

[0.017756] 

0.0084105 

[0.014929] 

-0.05759 

[0.01939] 

0.0213 (0.8839) 

Cotton (2) 0.53517 

[0.19845] 

-1.1139 

[0.047992] 

0.21495 

[0.049604] 

0.053922 

[0.027963] 

2.5227 (0.1122) 

Notes: Lag length in (.) determined by AIC (left column). Standard errors in [.]. † test statistic following a Chi-

square distribution with one degree of freedom under the null; p-values in (.). * indicating 5% and ** indicating 

1% significance level. Interest rate 𝑟𝑡 restricted to be exogenous in 5b. 

 

Table 6a reports tests on the 𝛼⊥
′  derived from 𝜶 in Eq. (11a) to identify which market is 

leading the price formation process. Results suggest that the futures market is leading in most 

cases. The evidence is less conclusive for grains than for soft commodities and inconclusive 

wheat and corn markets. Tests on 𝛼⊥
′  imply test for weak exogeneity. For Eq. (11a) the futures 

price is hence found weakly exogenous in most cases. For Eq. (11b) the lead-lag relationship 

cannot be clearly identified due to the potential endogeneity of the inventory market. Indeed, 

tests on 𝜶 suggest that both spot and futures price are weakly exogenous, except for the cocoa 

market, where futures prices and inventory are found weakly exogenous.  
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Table 6a. Test for leading market using 𝛼⊥
′  for (11a) 

 𝑠𝑡 𝑓𝑡 𝛼⊥
′  𝐻0: 𝛼⊥

′ = (1,0) †  𝐻0: 𝛼⊥
′ = (0,1) † 

Wheat (10) 

 

-0.03017 

[0.0203] 

0.00469 

[0.0152] 

(0.1344,  

0.8656) 

0.8014  

(0.3707) 

0.0348 

(0.8520) 

Corn (8) 

 

-0.01256 

[0.0343] 

0.03304 

[0.0296] 

(0.7245, 

0.2755) 

0.0988 

(0.7533) 

0.9159  

(0.3386) 

Soy (7) 

 

-0.18631 

[0.0845] 

0.00700 

[0.0880] 

(0.0362, 

0.9638) 

9.2955  

(0.0023)** 

0.0051 

(0.9431) 

Cocoa (4) 

 

-0.08025 

[0.0440] 

0.05990 

[0.0492] 

(0.4274, 

0.5726)  

2.1833  

(0.1395) 

0.9770  

(0.3230) 

Coffee (1) 

 

-0.08013 

[0.0331] 

0.00537 

[0.0319] 

(0.0629, 

0.9371) 

4.8895  

(0.0270)* 

0.0239  

(0.8772) 

Cotton (4) 

 

-0.12617 

[0.0575] 

0.00737 

[0.0483] 

(0.0552, 

0.9448) 

4.1316  

(0.0421)* 

0.0201  

(0.8874) 

Notes: 𝛼⊥
′ = (0,1) implies the futures market is leading the price discovery process and 𝛼⊥

′ = (1,0) implies 

the cash market is leading the price discovery process. 𝛼⊥
′ = (𝛼2 (−𝛼1 + 𝛼2)⁄ , −𝛼1 (−𝛼1 + 𝛼2)⁄ ). Lag length 

in (.) determined by AIC (left column). Standard errors in [.]. † Test statistic following a Chi-squared 

distribution with two degrees of freedom under the null; p-values in (.). * indicating 5%  and ** indicating 1% 

significance level. 

 

 

Table 6b. Test for weak exogeneity using 𝛼 for (11b) 

 𝑠𝑡 𝐻0: 𝛼1 = 0  𝑓𝑡 𝐻0: 𝛼2 = 0 𝐼𝑡 𝐻0: 𝛼3 = 0 

Cocoa (2) 

 

-0.12680 

[0.0410] 

7.4133** 

(0.0065) 

0.07724 

[0.0492] 

1.8565 

(0.1730) 

-0.21394 

[0.1853] 

0.86845 

(0.3514) 

Coffee (3) 

 

-0.39744 

[0.1854] 

3.3839 

(0.0658) 

-0.16917 

[0.1809] 

0.67834 

(0.4102) 

-0.17780 

[0.0775] 

4.3135* 

(0.0378) 

Cotton (2) 

 

-0.02673 

[0.0367] 

0.36964 

(0.5432) 

-0.02219 

[0.0315] 

0.40164 

(0.5262) 

-0.17040 

[0.0341] 

12.134** 

(0.0005) 

Notes: Lag length in (.) determined by AIC (left column). Standard errors in [.]. Tests statistic on restrictions 

following Chi-squared distribution under the null hypothesis with one degree of freedom; p-values in (.). * 

indicating 5%  and ** indicating 1% significance level.  

 

Tables 7a-b report the coefficients on the information shocks. Estimations are based on 

single equation error correction models. Position data is found significant with regards to price 

impulses induced by commercial hedgers and impulses by index traders for most markets. This 

effect is more pronounced in the futures than the cash market as predicted under imperfect 

spatial arbitrage. For all but the wheat, corn and coffee market, position changes are 

significantly related to changes in the cash as well as futures prices. For soybeans and cotton, 

for which the futures market was found to be leading the price formation process, the effect of 

trader position changes on the cash market price are strongest.  
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Table 7a. Trader Position Indicators Eq. (11a) 

 Cash market 𝑠𝑡 Futures market 𝑓𝑡 

 ∆𝜑𝑡  ∆𝜗𝑡  ∆𝜑𝑡  ∆𝜗𝑡  

Wheat (4,4) 

 

0.00683 

[0.03917] 

-0.06675 

[0.06569] 

-0.02499 

[0.02854] 

0.04363 

[0.04765] 

Corn (7,7) 

 

0.00781 

[0.01765] 

0.00749 

[0.02997] 

-0.03230 

[0.01583]** 

-0.01178 

[0.03152] 

Soy (4,5) 

 

0.05139 

[0.02536]** 

0.00414 

[0.03976] 

-0.10055 

[0.02488]*** 

-0.05267 

[0.03279] 

Cocoa (4,4) 

 

-0.02984 

[0.01610]* 

0.02678 

[0.04380] 

0.01354 

[0.01617] 

-0.02122 

[0.04803] 

Coffee (5,5) 

 

-0.01496 

[0.01562] 

-0.01607 

[0.02837] 

-0.00503 

[0.01626] 

0.00525 

[0.02758] 

Cotton (1,1) 

 

0.01848 

[0.01062]* 

0.04216 

[0.03421] 

-0.02377 

[0.01015]** 

-0.05767 

[0.03045]* 

 

Table 7b. Trader Position Indicators Eq. (11b) 

 Cash market 𝑠𝑡  Futures market 𝑓𝑡  

 ∆𝜑𝑡  ∆𝜗𝑡  ∆𝜑𝑡  ∆𝜗𝑡  

Cocoa (2,2) 

 

-0.05302 

[0.02433]** 

0.14316 

[0.07993] 

0.06598 

[0.03029]** 

-0.27159 

[0.07590]*** 

Coffee (2,3) 

 

0.01299 

[0.01610] 

0.01306 

[0.02827] 

-0.02455 

[0.01720] 

0.00192 

[0.02665] 

Cotton (0,1) 

 

0.03027 

[0.01425]** 

-0.01832 

[0.05073] 

-0.03812 

[0.01591]** 

-0.04478 

[0.04205] 

Notes: Lag length in (.) chosen by general to specific modelling. Heteroscedasticity robust standard errors in [.]. 

* indicating 5%  and ** indicating 1% significance level.  

 

 

B. Test for Regime Shifts 

A regime switching model is suggested for the estimation of the different regimes 

identified in Table 2 (Hamilton 2008). Under regimes (1–3) the first difference of the basis 

follows a white noise process, while under regime (4) the basis follows the difference of 

fundamental and speculative information weighted by the share of uninformed traders in the 

market:  

∆𝑏𝑡 = {
𝑤𝑡

𝑏1                                       (1– 3)

𝛽(∆𝜑
𝑡
− ∆𝜗𝑡) + 𝑤𝑡

𝑏2           (4)
 (13) 

The regime-switching regression is specified in Eq. (14), with 𝜁𝑡 being a random variable 

that assumes values 𝜁𝑡 = 1 or 𝜁𝑡 = 2 to differentiate between regimes (1–3) and regime (4). 

The probabilistic model of what causes the change from 𝜁𝑡 = 1 to 𝜁𝑡 = 2 is based on a two-

state Markov chain with constant regime-switching probabilities.  
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∆𝑏𝑡 = 𝜷𝜻𝒕

′ 𝒛𝒕 + 𝑤𝑡
𝑏 (14) 

The set of explanatory variables, 𝒛𝒕 is defined as in Eq. (12). Lagged values of ∆𝑏𝑡 are 

added to control for autocorrelation in the residuals. Coefficients for lagged values are fixed 

while the remaining coefficient can vary across regimes. Regression results are summarized in 

Table 8.   

Table 8. Markov Switching Regime Eq. (14) 

 Wheat (4) Corn (2) Soy (4) Cocoa (6) Coffee (7) Cotton (1) 

Regime 4 

𝑐  -0.182*** 

[0.0013] 

0.032 

[0.3508] 

0.088*** 

[0.0028] 

0.011 

[0.2677] 

-0.057** 

[0.0102] 

-0.121** 

[0.0357] 

∆𝜑𝑡  0.042 

[0.9108] 

-0.367*** 

[0.0018] 

-0.426*** 

[0.0046] 

-0.145*** 

[0.0008] 

-0.618*** 

[0.0000] 

-0.566** 

[0.0101] 

∆𝜗𝑡  0.479 

[0.2804] 

-1.038*** 

[0.0004] 

-2.773*** 

[0.0000] 

-0.708*** 

[0.0000] 

-0.212 

[0.3155] 

-0.155 

[0.5518] 

Regime 1–3  

𝑐  -0.008 

[0.1989] 

0.005 

[0.4741] 

0.003 

[0.2062] 

-0.005 

[0.2362] 

0.003 

[0.3489] 

0.001 

[0.9894] 

∆𝜑𝑡  0.082** 

[0.0261] 

0.018 

[0.3319] 

0.011 

[0.4042] 

0.016 

[0.4307] 

-0.011 

[0.4424] 

0.006 

[0.8911] 

∆𝜗𝑡  0.121** 

[0.0271] 

-0.009 

[0.8923] 

-0.008 

[0.7187] 

0.203*** 

[0.0007] 

-0.034 

[0.2363] 

0.010 

[0.9583] 

Transition Probabilities 

P11-C 1.075* 

[0.0953] 

-0.108 

[0.7806] 

-1.402 

[0.2162] 

0.869 

[0.1531] 

-1.166 

[0.1965] 

-0.481 

[0.6279] 

P21-C 3.833*** 

[0.0000] 

-3.927*** 

[0.0000] 

-4.845*** 

[0.0000] 

1.184*** 

[0.0005] 

-3.171*** 

[0.0000] 

-4.252*** 

[0.0000] 

i=1 j=1 0.254407 0.472982 0.197513 0.295400 0.237572 0.382117 

i=1 j=2 0.745593 0.527018 0.802487 0.704600 0.762428 0.617883 

i=2 j=1 0.021196 0.019330 0.007807 0.234298 0.040281 0.014038 

i=2 j=2 0.978804 0.980670 0.992193 0.765702 0.959719 0.985962 

Duration 1 1.341214 1.897470 1.246126 1.419245 1.311600 1.618430 

Duration 2 47.17762 51.73336 128.0970 4.268066 24.82586 71.23351 

Notes: Lag length in (.) decided by AIC. c is a constant; * for 10 %, ** for 5%, and *** for 1% significance 

level. Z-statistic with p-values in [.]; constant transition probabilities: P(i, k) = P(ζ(t) = k | ζ(t-1) = i); Duration 

is the constant expected duration for regime 1 and 2.  

 

Regime (4), for which the coefficients for trader positions are found significant, is of much 

shorter duration, spanning one to two weeks only, than the prevailing regimes (1–3). This is 

expected as limits to arbitrage resulting in zero elasticity of arbitrage should be a rare incident 

if markets are functioning. Regime (4) shows non-zero and predominantly negative constants. 

This suggest that periods in which limits to arbitrage prevail are associated with a shrinking 

market basis whereby futures prices increase faster or more than spot prices. Coefficients for 
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trader positions are predominantly negative indicating that these are associated with the market 

becoming inverted. While these results support the model’s predictions, they imply that the 

joint presence of limits to spatial arbitrage and noise trader risk, that is regime (4), is rare. 

V CONCLUSION  

The paper derives a model of price discovery in commodity markets that accounts for 

limits to arbitrage in two forms: limits to spatial arbitrage and limits to fundamental arbitrage. 

Limits to spatial arbitrage arise over transaction costs involved in the process of trading in 

commodity futures or cash markets. If transaction costs are significant, the elasticity of 

arbitrage is limited. Limits to fundamental arbitrage arise if systematic noise traders are present 

in the market which induce price deviations from market fundamentals in the short run.  

It is shown that under these assumptions the relationship between cash and futures markets 

depends on the elasticity of arbitrage and the weight of uninformed traders in the market. Four 

different market regimes are identified: (1) effective arbitrage, (2) transaction cost induced 

limits to arbitrage and no noise trader risk, (3) effective arbitrage between cash and futures 

markets and noise trader risk and (4) limits to arbitrage due to both transaction cost and noise 

trader risk. It is shown that, firstly, price levels and changes are driven by both changes in 

market fundamentals and changes in speculative demand under the latter two regimes. 

Speculative demand spills over to the cash market if spatial arbitrage is effective but is 

restricted to the futures market if spatial arbitrage in limited. Secondly, if spatial arbitrage is 

limited the cointegrating relationship between cash and futures prices breaks and the market 

basis follows a random walk process. If further, noise trader risk is present, the market basis is 

also driven by speculative demand. 

Empirical results largely confirm the model’s predictions. Findings further suggest that 

regime (4) with zero elasticity of arbitrage is short lived and rare. A variation of regime (3) 

with imperfect elasticity of arbitrage prevails in most markets, which means that noise trader 

risk is more prevalent in the futures market than in the spot market. 

The model and empirical evidence presented in this paper imply that the price discover 

process of commodity futures markets is affected by the presence of noise traders. The strength 

of the effect in both futures and cash markets depends on the relative market weight of noise 

traders in the futures markets and the elasticity of arbitrage. If the elasticity of arbitrage between 

cash and futures markets is high, price impulses by noise traders are likely to spill over to the 
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cash market. If the elasticity of arbitrage is low, noise trader risk is revealed in an excessive 

market basis.  
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