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Abstract  

 

This investigation seeks to construct financial conditions indices (FCIs) by the partial least 

squares (PLS) method with the aims (i) that the FCIs should outperform interest rate, which is 

conventionally used in small VAR (Vector Auto-Regression) models to present the predictive 

macro-impacts of the financial markets, and (ii) that the FCIs are adequately invariant during 

regular updates to resemble non-model based aggregate indices. Both aims are shown to be 

attainable as long as the FCIs are tailor-made with carefully selected components and suitably 

targeted macro variables of forecasting interest. The positive outcome sheds light on why the 

widely used principal component analysis (PCA) approach is ill-suited to the tasks here 

whereas why the PLS route promises a fruitful way forward. 
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1. Introduction  

 

The 2008 financial crisis has drawn macroeconomists’ attention onto a major weakness 

of extant macro models – lack of variables adequately representative of broad financial market 

conditions which must have exerted non-negligible predictive impact on key macro variables, 

e.g. see Barnett (2011), Ng (2011) and Borio (2013). Correspondingly, there is a visible growth 

in the construction of various financial conditions indices (FCI). Since there lacks a clear matrix 

to weigh up indicators and indices across different financial markets, most of these aggregate 

FCIs are model-based and essentially based on the method principal component analysis (PCA) 

and/or augmented by dynamic factor analysis (DFA), e.g. see Hatzius et al (2010), Brave and 

Butters (2011), Qin and He (2012), Paries et al (2014). 

Evaluation of the predictive macro impacts of existing FCIs has yielded mixed results, 

e.g. see Aramonte et al (2013). Many of these FCIs suffer from a lack of historical invariance 

when the models from which they have been derived are updated with incoming new data. 

Although it is shown in Stock and Watson (2011) that factor invariance is theoretically 

achievable if the chosen indicator set is sufficiently large, this is virtually unachievable in 

practice, because available financial indicators which are potentially relevant for macro 

forecasting purposes fall well below this ‘sufficiently large’ requirement. Moreover, financial 

indicators are often found to be most prone to weight shifts as compared to non-financial 

indicators, e.g. see Stock and Watson (2009). If indicator sets are artificially extended by 

inclusion of many other irrelevant indicators, the predictive capacity of the resulting factors 

dwindles. Consequently, FCIs which are shown to exhibit certain macro predictive capacity 

tend to suffer from frequent historical variations during model updates and hence cannot be 

used in the same manner as those non-model based aggregate indices, such as CPI (consumer 

price indices). 
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This weakness may be circumvented by an alternative method – partial least squares 

(PLS), a method which has been rarely used in econometrics since its invention about half a 

century ago, see Wold (1966, 1975). Since the forecasting variables of interest are explicitly 

imposed as a targeting condition or a constraint in the PLS procedure, the probability should 

be greater to find the resulting component weights more constant than those PCA-based ones. 

Meanwhile, the predictive capacity of PLS-based indices cannot be inferior, and is likely to be 

superior, to those comparable PCA-based ones since the PLS method can be seen as an 

extension of the PCA method. Indeed, this point has already been verified in a few econometric 

studies emerging in the recent decade, e.g. Lin and Tsay (2005), Groen and Kapetanios (2008), 

Eickmeier and Ng (2011), Lannsjö (2014), Kelly and Pruitt (2015), Fuentes et al (2015). 

The present investigation builds on the above finding and delves into the possibility of 

constructing PLS-based FCIs which resemble commonly used aggregate indices and also 

outperform monetary variables in conventional macro models in forecasting major macro 

variables. Our investigation is carried out on the US case. Following the common practice, we 

set our experiments within the simple framework of small-scaled vector-auto-regression 

(VAR) models. Specifically, we choose inflation, annual growth rates of industrial production 

(IP) and GDP as our macro variables of forecasting interest and interest rate to represent the 

conventionally used monetary variables. It should be noted that four of the six previous studies 

cited in the previous paragraph are also on the US case, but none has been focused on the 

construction of FCIs, nor on the issue of historical invariance of the resulting aggregate factors 

during data updates so as to make them comparable to non-model based aggregate indices. 

Our investigation has yielded encouraging results. It is indeed possible to construct PLS-

based FCIs which resemble commonly used non-model based aggregate indices and also 

outperform the interest rate variable in our comparative forecasting exercises. Moreover, such 

FCIs have to be tailor-made, with carefully selected components and specifically targeted 
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macro variables of forecasting interest. The outcome of our experiments helps shed light on 

why the PCA route is ill-suited to the task here whereas why the PLS route promises a fruitful 

way forward (see section 5). But before describing these findings in more detail (section 4), we 

need to outline first the forecasting methods (section 2), as well as financial indicator selection 

and classification principles (section 3). 

2. Forecasting Methods  

 

We design our experiments on the basis of a prototype VAR model of output (year-on-

year) growth, (annual) inflation and interest rate, following the seminal works by Stock and 

Watson, e.g. (1989; 2002). Two output variables are considered – IP and GDP, due mainly to 

the lack of published monthly GDP time-series. Here, monthly GDP are interpolated from 

quarterly time series using the monthly weights of total retail sales, which is taken as a proxy 

of private consumption, the largest component (over 2/3) of the US GDP series.1 Data series 

of these four variables are plotted in Figure 1 and their sources are listed in Appendix. Since 

the forecasting adequacy of conventionally used monetary variable is our focal interest, we 

regard the interest rate, 𝑖𝑡, as an exogenous variable. Specifically, denote the dataset of the 

three macro variables of forecasting interest as , we have: 

(1) .  

Now, let us denote  as a dataset of financial variables which have been standardised 

following the PCA convention. Let  be the latent FCI set corresponding to , with 

. In the PCA setting:  

(2)      𝑋𝑡 = 𝐹𝑡𝑃
′ + 𝑈𝑡, 

                                                           
1 We have also experimented with a compound weights of the sum of retail sales and net foreign trade, but the 

results differ little. 
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these latent factors are derived by their maximum capacity of representing data variance in 

terms of the covariance matrix, 𝑋′𝑋. The resulting PCA-factor based model as an alternative 

to (1) is: 

(3) .  

As mentioned in the previous section, the constancy in 𝑃′ tends to be poor when (2) is 

re-estimated as new data observations become available, to the extent that the PCA-based 𝐹𝑡 

suffers from frequent historical revisions during regular updates. Consequently, 𝐹𝑡 cannot be 

treated in an equivalent manner as 𝑖𝑡 making model (3) less credible than model (1). In order 

to circumvent this weakness, we turn to the PLS method. The method effectively extends (2) 

by adding a constraint on the choice of component weights with respect to the targeted 

forecasting variables: 

(4) y𝑗,𝑡 = 𝐺𝑗,𝑡−1𝐵𝑗
′ + 𝑉𝑗,𝑡, 𝑗 = 1,2,3.  

In contrast to PCA, PLS factors are derived by the principle of maximising the covariance 

matrix, 𝑋′𝑌𝑌′𝑋. The PLS method is executed by means of a nonlinear iterative algorithm on 

(2) and (4) to estimate matrices, P and B, so as to produce PLS-based 𝐹𝑡. The algorithm is 

commonly known as NIPALS, following H. Wold’s seminal work (1966, 1975, 1980), see also 

Wegelin (2010) and Sanchez (2013). 

Currently, we limit our experiments to the first PLS factor only so as to keep the 

investigation as practical and focused as possible.2 Monthly data of the period 1980M1-

2014M12 are collected, and the first sub-period of 1980-2000 is kept for model estimation. The 

estimated models are then used for forecasts up to two years (24 months) before they are 

updated. This allows us to carry out seven rounds of comparative forecasting trials. Within 

each round, the predicted part of the FCIs is derived using the estimated component weights 

                                                           
2 There is noticeable desire from many central banks for single aggregate financial sector indices, e.g. see 

Gadanecz and Jayaram (2009). 
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from the latest update. In correspondence to the FCIs from each update, a set of concatenated 

FCIs are also produced and used in the forecasting trials. In order to highlight the differences 

between the concatenated FCIs from those FCIs derived simply from various rounds of 

estimation, we sometimes refer to the latter as the un-concatenated FCIs. An illustration of how 

concatenated FCI series are constructed is given in Figure 2. 

Since over-parameterisation is a well-known weakness of VAR models, we adopt the 

general-to-specific approach (see Hendry, 1995) during the estimation stage of the first sub-

sample as well as the subsequent updates to reduce (1) and (3) into parsimonious models.3 

3. Selection of Financial Variables as Indicators  

 

The selection is driven mainly by two concerns: market coverage and dynamics. The first 

has been widely acknowledged. We thus follow the recent literature in making our choice of 

the financial series, e.g. Hatzius et al (2010) and Paries et al (2014). A detailed list of these 

series is given in the Appendix. 

The second concern, however, has been far less heeded than the first. In the present 

investigation, we deal with the dynamic selection issue in two stages. The first stage follows a 

classification proposed by Qin and He (2012), i.e. processing and dividing financial series into 

two types – the short-run versus the long-run indicators. The former consists of growth rates 

or changes of individual variables whereas the latter various ratios or differences between 

series, such as various interest rate spreads. Since the latter type embodies the disequilibrium 

effects of financial markets in a much concentrated manner, it is expected to capture what has 

been identified as main transmission channels between the financial and real sectors, see BCBS 

(2011). From the time-series perspective, this set of disequilibrium indicators exhibits 

distinctly lower frequency dynamics than the short-run sets, dynamics which matches better 

                                                           
3 It is shown in Qin et al (2008) that parsimonious reduction of dynamic models raises the forecasting capacity 

significantly. 



SOAS Department of Economics Working Paper Series No 201 - 2016 
 
 

9 

 

with those exhibited from macro time series. Such match is substantively important as it 

corresponds to what applied economists have tried to emphasise, e.g. see Drehmann et al 

(2012) and Borio (2014) as a recent effort. In a subsequent study, Wang (2016) experiments 

with the PLS-based FCIs extracted from indicator sets by Qin and He’s classification. His 

experiments reveal that the indicators which play significant roles to the formation of FCIs are 

dominantly from the disequilibrium set while short-run indicators can be largely screened out. 

This finding confirms to the conventional wisdom that everyday volatilities from financial 

markets are mostly noise to the real sectors unless they accumulate into disequilibrium signals 

too large to be ignored at a macro level. Following Wang’s finding, our indicator set is solely 

built on disequilibrium financial variables, see Table 1. Through careful scrutiny of the 

dynamic movements of individual variables, we find a few exhibiting distinctly greater 

persistence than others, such as bank lending to deposit ratio and the ratio of bond market index 

to equity market index. We therefore include their first-differences into the set as well. 

The second stage is to allow for the possibility that indicators from various financial 

markets do not move with the same dynamic pulse. It should be noted that almost all the 

available factor-based aggregate indices in the literature are derived from large time-series 

panels of indicators arranged homogeneously timewise. This amounts to imposing simultaneity 

or regular cross-market synchronisation on all indicators, an assumption which is obviously 

over-restrictive here. We therefore try to relax this assumption by exploring the screening 

capacity of the PLS method, e.g. see Wold et al (2010). Specifically, we allow each indicator, 

𝑥𝑖,𝑡−𝑚, to differ in lags up to six months: , and select the lag with the largest loading 

using the PLS sparse method. As a result, the filtered set, 𝑋𝑛, contains indicators with 

heterogeneous lag lengths between 1 and 6 months. Clearly, the longer of the indicator lags, 

the greater the predictive value of the corresponding indicators is in terms of leading 

information provision. 



SOAS Department of Economics Working Paper Series No 201 - 2016 
 
 

10 

 

4. Empirical Results  

 

First of all, it is clearly shown in Figure 3 that different forecast targets result in different 

FCI series by the PLS method. Similarity of the IP-targeted FCI and the GDP-targeted FCI 

reflects the fact that industrial production forms a sizeable part of GDP, but the difference of 

these two series from the inflation-targeted FCI is too striking to ignore. The forecasting 

constraint expressed by Eq. (4) is indeed binding on Eq. (2). An immediate implication of this 

is that an unconstrained and universal FCI based on the PCA approach should be inferior to 

these FCIs as far as the predictive capacity with respect to targeted variables is concerned.  

In addition to those FCIs illustrated in Figure 3, a set of concatenated FCIs are also 

constructed from each update (see Figure 2 for the concatenation method). The two sets are 

used in model (3) alternatively in our comparative analysis of the relative forecasting 

performance of models (3) versus (1). The analysis is based on two commonly used statistics: 

(i) ratio of the mean squared errors (RMSE) of (3) to (1) and (ii) p-value of a forecasting 

encompassing test known as the modified Diebold-Mariano (MDM) test, with the null 

hypothesis postulating that (3) encompasses (1).4 Since the sample size of individual rounds of 

forecasting trials is relatively small (24 months), we also report the two test statistics using 

accumulated foregoing samples from the 2nd round onwards. The statistics based on trials using 

the concatenated FCIs are also reported from the 2nd round onwards. All these test statistics are 

reported in Table 2. To cut through the details of this table, a summary diagram is plotted in 

Figure 4 using the average RMSEs of all individual rounds categorised by forecasting horizon 

from Table 2. 

Key results of Table 2 and Figure 4 can be drawn from four different perspectives. First, 

model (3) outperforms model (1) at a broad level, the majority of the RMSE is smaller than 

                                                           
4 It should be noted that results from the RMSE do not always agree with the MDM test results because the two 

are based on different statistical criteria, see Harvey et al (1998).   
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unit and most of the p-values are larger than 5%. Second and from the perspective of 

forecasting horizons, the predictive supremacy of (3) over (1) becomes unquestionably evident 

when the horizon extends beyond 6 months. We deduce two explanations for this. There must 

be valuable leading information content in the FCIs which is missing in the interest rate 

variable. Meanwhile, the dynamics of the three targeted variables are dominantly explained by 

their own first lag in both models. In other words, these variables exhibit a strong unit-root 

dynamic tendency, see Figure 1, and the simple VARs with a single financial variable, be it 

interest rate or FCI, are inadequate in explaining that dynamics.5 We shall come back to this 

point later. Third and from the angle of three target variables, the IP-targeted FCIs are the most 

effective in raising the predictive capacity of (3) over (1) while the inflation-targeted FCIs are 

the least effective. This suggests that IP is more susceptive to general financial market 

conditions than GDP whereas inflation the least susceptive of the three. Indeed, both the 

interest rate variable and the FCI are dropped out as insignificant from the parsimonious VAR 

reduction process in the last two rounds of the post-crisis period, resulting in those not available 

(N/A) entries in Table 2.6 Interestingly, the concatenated FCI has survived model reduction of 

these two rounds although the resulting predictive value-added looks marginal. A comparison 

of the concatenated versus un-concatenated FCIs forms the fourth perspective. On the whole, 

we find it viable to concatenate PLS-based FCIs regularly in two-year intervals, with predictive 

results on a slightly favourable side in the IP case, no noticeable difference in the GDP case, 

and on a marginally unfavourable side in the inflation case. If we look at the time-series plots 

of un-concatenated versus concatenated FCIs in Figure 5, we find that the two sets are much 

closer prior to the 2008 crisis than the post-crisis period and that, in the inflation case, the crisis 

                                                           
5 The estimated results of parsimonious VARs in various rounds of comparative forecasting trials are not reported 

here to save space. Nevertheless, the basic dynamic structure of these VARs is similar to what has been reported 

in the relevant literature.  
6 In all the reduced VAR models, the own lags of inflation exhibit strongest unit-root tendency whereas the own 

lags of IP the weakest of the three. 
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has resulted in a rather permanent gap between the two series. In order to further illustrate how 

the crisis affects concatenation, we disaggregate, in Figure 6, the summary RMSEs of the 

concatenated version used in Figure 4 into two parts: one for the pre-crisis subsample and the 

other the post-crisis subsample. Figure 6 shows clearly that, during financial market turmoil, 

concatenation helps maintaining the predictive capacity of those FCIs which have been 

empirically verified for suitably targeted variables, e.g. IP in the present case. The practical 

significance of this finding is two-fold at least. (i) Concatenation of model-based FCIs is 

achievable only when they are carefully customised for suitably targeted macro variables, and 

it is virtually impossible to construct one FCI which possesses adequate predictive power for 

all key macro variables and remain practically invariant during model update; and (ii) The goal 

of concatenation offers us an additional handle of selection. It helps us to identify which macro 

variable is more susceptive to overall financial market disequilibrium shocks than others, and 

moreover how varied these shocks are from different financial market components in terms of 

both magnitude and dynamics. 

The latter aspect leads us to the next issue of examination – the PLS component weights 

and lag lengths of the FCIs. These are listed in Tables 3, 4 and 5 from three sub-sample 

estimations – the base round plus two rounds corresponding to Figure 5. Tables 6 is a 

condensed version of these three tables in combination. The first and foremost noticeable 

evidence from these tables is lack of cross-market synchronisation as far as the component lags 

are concerned. Meanwhile, a sizeable part of the components have relatively constant weights 

over time, as shown by the grey-shaded blocks, especially before the 2008 financial crisis. If 

we compare the weights for the three targeted variables, we notice that there are more 

insignificant or small weights in the inflation case than the other two cases. This reflects why 

the predictive power of inflation-targeted FCI is the weakest. Now, let us compare the lags and 

weights across different markets. It is discernible that weights of the indicators from forex 
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markets and/or equity markets are smaller on the whole than those of the indicators from the 

fixed-income markets as well as the banking sector. This implies that disequilibrium shocks 

from the forex and equity markets play a relatively minor role to our macro variables of 

forecasting interest. Overall, indicators of the fixed-income markets provide greater leading 

information content than those of the banking sector by having relatively longer lags. On the 

other hand, most of the weights of those differenced indicators in the banking sector are either 

relatively small or insignificant, a result in partial confirmation to Wang’s earlier finding 

(2016) about the general irrelevance of short-run indicators as a category. Another point worth 

special scrutiny is indicator, x15, interest rate premium in the banking sector, since this 

indicator is closest to the interest rate variable in benchmark model (1). The impacts of this 

indicator remain relatively stable for all three macro variables, albeit with longer lag lengths in 

the IP and GDP cases than what we find in the benchmark model. Nevertheless, there is no 

sign of its weights dominating, in absolute magnitude, the weights of other significant 

indicators, a sign which reflects clearly financial information deficiency of the benchmark 

model. 

One issue which deserves further scrutiny is the forecasting performance of model (3) 

versus model (1) with respect to the oncoming of the 2008 financial crisis. It is already shown 

in the mid-column block of Table 2 that (3) outperforms (1) during the 2007M1-08M12 period 

for forecasting horizon longer than 3 months, indicating that the FCIs have brought in more 

relevant and earlier signals than what the interest rate variable contains, especially when we 

take into consideration those relatively long lags of significant indicators listed in Tables 3-5. 

Table 7 provides the absolute mean squared errors (MSE) of forecasting by the two models for 

three sub-sample periods: a seven-year pre-crisis period, a 12-month period leading into the 

crisis and a 24-month crisis period. It is evident from the table that model (3) provides 

marginally better forecasts than model (1) of the oncoming crisis (2nd period), although both 



SOAS Department of Economics Working Paper Series No 201 - 2016 
 
 

14 

 

models forecast poorly during the crisis period (much larger MSEs of the 3rd period than those 

of the 1st period). If we compare the MSEs across different forecasting targets, we see that IP 

is the most affected by the crisis while inflation the least. This is actually already shown in both 

Figure 2 and Tables 3-5, where the crisis has resulted in least variations in the inflation case as 

compared to the other two cases as far as shifts between the concatenated and un-concatenated 

FCIs and also in the indicator weight compositions are concerned. This finding confirms to our 

earlier observation that inflation is the least sensitive of the three to financial market conditions. 

Finally, it is worth pointing out a major limitation of the VAR model framework in 

predicting the impact of major external shocks, since these models rely dominantly on the 

explanatory power of the own lags, i.e. the lagged dependent variables. This is partially 

discernible from Table 6, where improvements by FCIs are rather small as compared to the 

scale of deteriorating MSEs as the forecasting horizons rise, especially during the crisis period. 

It is evident that a better designed model framework to include major co-trending and/or co-

shifting variables or factors is desirable before further experiments on FCIs are carried out. 

5. Concluding Remarks  

 

The experimental results are encouraging. We find it possible to produce model-based 

FCIs which can be updated in the similar manner as non-model based aggregate indices are 

updated. Such FCIs have to be tailor-made, with carefully selected components and specifically 

targeted macro variables of forecasting interest. The positive outcome sheds us light on why 

PCA-based FCIs are inappropriate for the task here. It is too naïve not only to aim at 

constructing one aggregate FCI which should have predictive impacts on a wide range of macro 

variables, but also to assume synchronisation of all the financial indicators from which the 

PCA-based FCIs are extracted. Furthermore, the need to go for tailor-made FCIs using the PLS 

method tells us the importance of assessing carefully the substantive distances of targeted 

macro variables to general financial market conditions. Specifically in the present case, we find 



SOAS Department of Economics Working Paper Series No 201 - 2016 
 
 

15 

 

that IP is the most vulnerable while inflation is the least responsive of the three to aggregate 

financial market disequilibrium shocks. This finding suggests to us that the PLS-based FCIs 

may exhibit greater predictive potential if they are applied to conventionally built structural 

models instead of small VAR models. In other words, the PLS route should not be regarded 

narrowly as another data-mining tool in a data-rich situation with as little dependence on 

substantive knowledge as possible. 

Indeed, experiments on how to utilise PLS-based FCIs to improve conventional structural 

models are on the top of our future research agenda. Meanwhile, much refinement is also highly 

desirable of the simple PLS method we have tried so far. One particular area is to seek ways to 

improve the PLS weight screening procedure by an appropriate mixture of mode A (reflective 

model) and mode B (formative model), e.g. see Wold (1980) and Esposito Vinzi et al (2010). 

All the existing econometric studies that we know of have adopted mode A, including ours. 

However, this mode is clearly over-simplistic when it comes to the screening of various 

financial indicators, especially to the case of dynamic selection of the indicators. Last but not 

least, more systematic investigations are needed into the conditions required for concatenating 

model-based FCIs during routine data updating processes, so as to enhance the practical 

significance of this research well beyond the academic arena. 
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Appendix: Variable definitions and data sources 

Variable Description Source (CEIC) 

O1 3-month market interest rate of US Euro Dollar Deposits Rate: London: 3-Month Month Average  

O2 3-month market interest rate of UK Sterling Interbank Rate: Last Fri of the Period: 3 Months 

O3 3-month market interest rate of 

Canada 

CA: Money Market Rate 

O4 3-month market interest rate of 

Sweden 

SE: Money Market Rate 

O5 exchange rate of UK UK: Official Rate; End of Period 

O6 Exchange rate of Canada CA: Official Rate; End of Period 

O7 Exchange rate of Sweden SE: Official Rate: End of Period 

O8 forward exchange rate of UK UK: Forward Exchange Rate: 3 Months  

O9 forward exchange rate of Canada  CA: Forward Exchange Rate: 3 Months 

O10 Forward exchange rate of Sweden SE: Forward Exchange Rate: 3 Months 

O11 Stock market index of US Index: Standard & Poors: 500 

O12 Stock market index of Canada CA: Index: Share Price (End of Period) 

O13 Stock market index of Germany Equity Market Index: Month End: DAX 

O14 Stock market index of Japan Index: TSE 1st Section Composite 

O15 Stock market index of UK UK: Index: Share Price 

O16 Low yield corporate bond  Corporate Bonds Yield: Moody's Seasoned: Aaa Rated 

O17 High yield corporate bond  Corporate Bonds Yield: Moody's Seasoned: Baa Rated 

O18 1-year to mature government bond Treasury Bills Yield: Constant Maturity: Nominal: Monthly 

Average: 1 Year 

O19 10-year to mature government bond  Treasury Notes Yield: Constant Maturity: Nominal: Monthly 

Average: 10 Years 

O20 20-year to mature government bond State and Local Government Bonds Yield: 20 Years to 

Maturity 

O21 3-month T bill Treasury Bills Rate: Secondary Market: Monthly Average: 3 

Months 

O22 6-month T bill Treasury Bills Rate: Secondary Market: Monthly Average: 6 

Months 

O23 Overnight interest rate  US: Deposit Rate: LIBOR: USD: Overnight 

O24 1-year market rate US: Deposit Rate: LIBOR: USD: 1 Year 

O25 Deposit rate US: Deposit Rate: LIBOR: USD: 3 Months 

O26 Lending rate  US: Lending Rate 

O27 Mortgage rate Mortgage Fixed Rate: Monthly Average: 30 Year 

O28 Mortgage volume of the banking 

sector 

Commercial Banks: Credit: LL: Real Estate 

O29 Loan volume of the banking sector Commercial Banks: Credit: Loans and Lease (LL) 
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O30 Total liabilities of the banking 

sector 

Commercial Banks: Total Liabilities 

O31 Equity of the banking sector Commercial Banks: Residual 

O32 Deposit volume of the banking 

sector 

Commercial Banks: Deposits 

O33 M1  US: Money Supply: M1: Seasonally Adjusted 

O34 Real effective exchange rate US: Real Effective Exchange Rate Index: Based on Consumer 

Price Index 

O35 Consumer Price Index US: All items; from OECD 

O36 Industrial Production Index US: Total industry; from OECD 

O37 GDP (quarterly) US: Gross domestic production in constant price; from OECD 

O38 Total retail sales US: Total retail trade; from OECD 
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Figure 1. Data Series of Variables in Model (1) 

 

Note: See Appendix for data source.  

 

Figure 2. Illustrations of concatenated FCIs 
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Figure 3. FCIs: black curve – targeted at IP growth; blue curve –targeted at GDP growth; 

red curve – targeted at inflation 

1980M8-2006M12 1980M8-2012M12 

  

 

 

 

 

Figure 4. Average RMSEs of Individual Rounds by Forecasting Horizon from Table 2 

 

Note: Model (3) outperforms (1) when RMSE<1. 
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Figure 5. FCIs (solid curve) versus Concatenated FCIs (dotted grey curve) 

1980M8-2006M12 1980M8-2012M12 

  

 
 

  

 

Figure 6. Subsample Average RMSEs of the Concatenated Version in Table 2 
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Table 1. Financial variables processed from the data series in Appendix 

Variable Definition 

Calculation method 

(see Appendix) 

 x1  Covered interest rate parity (CIP) vis-à-vis UK sterling  
O2-O1-(1/O8-O5) 

 x2  CIP vis-à-vis Canadian dollar 
O3-O1-(1/O9-O6) 

 x3  CIP vis-à-vis Sweden krona 
O4-O1-(1/O10-O7) 

 x4  
Real effective rate (RER) of US dollar O34 

 x5  Ratio of stock market indices (SMI): USA/Canada 
O11/O12 

 x6  Ratio of SMI: USA/Germany 
O11/O13 

 x7  Ratio of SMI: USA/Japan 
O11/O14 

 x8  Ratio of SMI: USA/UK 
O11/O15 

 x9  
Corporate bond yield spread: AAA versus BAA ratings O16/O17 

 x10  Treasury bond (TB) yield spread: 10-to-1 years 
O19-O18 

 x11  TB spread: 20-to-10 years 
O20-O19 

 x12  TB spread: 20-to-1 years 
O20-O18 

 x13  TB spread: 6-to-3 months 
O22-O21 

 x14  TED: interbank loan to TB rates 
O24-O23 

 x15  

Interest rate (IR) premium: money market rate (MMR) net of T-

bill rate 

O1 - O21 

 x16  
IR spread: lending-to-deposit rates O26-O25 

 x17  IR spread: Mortgage-to-corporate rates 
O27-O26 

 x18  
Total liability to equity ratio of the banking sector  O30/O31 

 x22  First difference of above 
 

 x19  
Total lending to deposit ratio of the banking sector O29/O32 

 x23  First difference of above 
 

 x21  
Bank lending: mortgage to loan ratio O28/O29 

 x25  First difference of above 
 

 x20  
Debt to liquidity ratio of the banking sector: M1 to liquidity O33/O30 

 x24  First difference of above 
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   Table 2. RMSE and p-value of Forecasting Encompassing Test from Comparative Forecasts 

 01M1-02M12 03M1-04M12 05M1-06M12 07M1-08M12 09M1-10M12 11M1-12M12 13M1-14M12 
h Target: IP growth; model (3) versus model (1)  

1 
1.00 

[0.25] 

0.97 

[0.62] 

1.00 

[0.50] 

1.03 

[0.11] 

0.98 

[0.43] 

1.01 

[0.18] 

0.99 

[0.17] 

0.81 

[0.66] 

0.93 

[0.45] 

0.95 

[0.54] 

0.93 

[0.47] 

1.01 

[0.16] 

0.93 

[0.46] 

3 
0.98 

[0.40] 

0.91 

[0.73] 

1.00 

[0.60] 

0.98 

[0.34] 

0.96 

[0.65] 

0.96 

[0.52] 

0.95 

[0.59] 

0.60 

[0.97] 

0.77 

[0.98] 

0.97 

[0.33] 

0.78 

[0.98] 

1.00 

[0.28] 

0.78 

[0.98] 

6 
0.92 

[0.82] 

0.90 

[0.54] 

0.93 

[0.86] 

0.87 

[0.82] 

0.92 

[0.82] 

0.88 

[0.86] 

0.90 

[0.95] 

0.52 

[0.98] 

0.67 

[0.99] 

1.05 

[0.18] 

0.68 

[0.99] 

0.86 

[0.58] 

0.68 

[0.99] 

9 
0.90 

[0.83] 

1.07 

[0.16] 

0.91 

[0.82] 

0.79 

[0.88] 

0.93 

[0.82] 

0.83 

[0.88] 

0.88 

[0.98] 

0.42 

[0.96] 

0.59 

[0.99] 

1.17 

[0.17] 

0.59 

[1.00] 

0.73 

[0.88] 

0.59 

[1.00] 

12 
0.94 

[0.56] 

1.22 

[0.42] 

0.94 

[0.45] 

0.80 

[0.63] 

0.98 

[0.44] 

0.84 

[0.62] 

0.89 

[0.96] 

0.40 

[0.70] 

0.55 

[0.99] 

1.29 

[0.41] 

0.56 

[0.99] 

0.73 

[0.65] 

0.56 

[0.99] 

 Alternative: model (3) using concatenated FCI versus model (1) 

1  
0.93    

[0.75] 

0.96 

[0.63]     

0.97    

[0.70] 

0.97 

[0.72] 

1.02 

[0.21] 

0.99 

[0.25] 

0.82 

[0.47] 

0.93 

[0.31] 

0.89 

[0.73] 

0.92 

[0.34] 

0.97  

[0.56] 

0.93 

[0.34] 

3  
0.84 

[0.82] 

0.92 

[0.73] 

0.89 

[0.69] 

0.92 

[0.79] 

0.94 

[0.45] 

0.93 

[0.67] 

0.58 

[0.92] 

0.75 

[0.92] 

0.87 

[0.62] 

0.76 

[0.92] 

0.96 

[0.51] 

0.76 

[0.92] 

6  
0.86 

[0.82] 

0.91 

[0.78] 

0.77 

[0.44] 

0.89 

[0.72] 

0.84 

[0.84] 

0.86 

[0.93] 

0.45 

[0.96] 

0.63 

[0.99] 

0.91 

[0.42] 

0.63 

[0.99] 

0.83 

[0.70] 

0.63 

[0.99] 

9  
1.17 

[0.12] 
0.93 

[0.60] 
0.62 

[0.48] 
0.88 

[0.57] 
0.77 

[0.87] 
0.81 

[0.97] 
0.31 

[0.93] 
0.52 

[0.99] 
1.02 

[0.23] 
0.53 

[0.99] 
0.74 

[0.87] 
0.53 

[0.99] 

12  
1.33 

[0.36] 

0.99 

[0.20] 

0.56 

[0.48] 

0.90 

[0.17] 

0.78 

[0.62] 

0.81 

[0.94] 

0.28 

[0.66] 

0.48 

[0.99] 

1.16 

[0.40] 

0.48 

[0.99] 

0.73 

[0.65] 

0.48 

[0.99] 

 Target: GDP growth; model (3) versus model (1) 

1 
1.01 

[0.09] 
0.97 

[0.74] 
0.99 

[0.45] 
1.00 

[0.21] 
1.00 

[0.26] 
1.06 

[0.18] 
1.01 

[0.12] 
1.00 

[0.26] 
1.00 

[0.09] 
1.05 

[0.04]* 
1.01 

[0.05] 
0.99 

[0.36] 
1.01 

[0.05] 

3 
1.07 

[0.03]* 

0.89 

[0.98] 

0.97 

[0.49] 

0.97 

[0.49] 

0.97 

[0.48] 

1.08 

[0.12] 

1.00 

[0.15] 

0.92 

[0.51] 

0.98 

[0.18] 

1.13 

[0.00]* 

0.99 

[0.09] 

0.99 

[0.36] 

0.99 

[0.08] 

6 
1.00 

[0.31] 
0.83 

[0.97] 
0.90 

[0.89] 
0.98 

[0.26] 
0.93 

[0.62] 
0.96 

[0.49] 
0.94 

[0.61] 
0.69 

[0.90] 
0.86 

[0.86] 
1.25 

[0.01]* 
0.88 

[0.86] 
0.80 

[0.96] 
0.87 

[0.90] 

9 
0.99 

[0.40] 

0.81 

[0.88] 

0.88 

[0.90] 

0.71 

[0.41] 

0.85 

[0.80] 

0.87 

[0.78] 

0.85 

[0.94] 

0.55 

[0.86] 

0.72 

[0.99] 

1.15 

[0.14] 

0.74 

[0.99] 

0.77 

[0.86] 

0.74 

[0.99] 

12 
1.06 

[0.44] 
0.76 

[0.60] 
0.88 

[0.71] 
0.82 

[0.47] 
0.86 

[0.53] 
0.85 

[0.57] 
0.86 

[0.77] 
0.47 

[0.63] 
0.66 

[0.98] 
1.08 

[0.42] 
0.68 

[0.98] 
0.76 

[0.59] 
0.68 

[0.99] 

 Alternative: model (3) using concatenated FCI versus model (1) 

1  
0.97 

[0.69] 

0.99 

[0.42] 

1.00 

[0.18] 

1.01 

[0.22] 

1.06 

[0.16] 

1.01 

[0.10] 

1.00 

[0.26] 

1.01 

[0.07] 

1.06 

[0.03]* 

1.01 

[0.04]* 

1.00 

[0.33] 

1.01 

[0.04]* 

3  
0.89 

[0.98] 

0.97 

[0.48] 

0.97 

[0.45] 

1.01 

[0.45] 

1.09 

[0.10] 

1.00 

[0.12] 

0.91 

[0.55] 

0.99 

[0.18] 

1.12 

[0.00]* 

0.99 

[0.10] 

0.99 

[0.38] 

0.99 

[0.09] 

6  
0.83 

[0.96] 

0.90 

[0.89] 

0.98 

[0.24] 

0.98 

[0.59] 

0.96 

[0.45] 

0.94 

[0.55] 

0.68 

[0.85] 

0.87 

[0.88] 

1.24 

[0.00]* 

0.87 

[0.79] 

0.81 

[0.96] 

0.87 

[0.84] 

9  
0.80 

[0.87] 
0.88 

[0.90] 
0.72 

[0.38] 
0.97 

[0.77] 
0.86 

[0.76] 
0.85 

[0.91] 
0.54 

[0.83] 
0.74 

[0.98] 
1.15 

[0.13] 
0.74 

[0.98] 
0.78 

[0.88] 
0.74 

[0.98] 

12  
0.76 

[0.60] 

0.88 

[0.71] 

0.82 

[0.46] 

0.99 

[0.50] 

0.85 

[0.57] 

0.86 

[0.74] 

0.44 

[0.62] 

0.67 

[0.98] 

1.08 

[0.41] 

0.67 

[0.98] 

0.77 

[0.60] 

0.68 

[0.99] 

 Target: inflation; model (3) versus model (1) 

1 
1.01 

[0.24] 
0.99 

[0.65] 
1.00 

[0.35] 
0.99 

[0.85] 
0.99 

[0.68] 
0.99 

[0.69] 
0.99 

[0.74] 
1.05 

[0.05] 
1.00 

[0.21] 
N/A N/A N/A N/A 

3 
1.01 

[0.24] 

1.00 

[0.44] 

1.00 

[0.25] 

0.99 

[0.76] 

0.99 

[0.53] 

0.97 

[0.71] 

0.98 

[0.73] 

1.08 

[0.01]* 

1.02 

[0.10] 

N/A N/A N/A N/A 

6 
0.98 

[0.48] 
0.96 

[0.64] 
0.98 

[0.56] 
0.97 

[0.95] 
0.97 

[0.88] 
0.96 

[0.72] 
0.96 

[0.84] 
1.06 

[0.05] 
1.02 

[0.16] 
N/A N/A N/A N/A 

9 
0.97 

[0.52] 

0.96 

[0.62] 

0.97 

[0.59] 

0.95 

[0.87] 

0.96 

[0.83] 

0.93 

[0.82] 

0.94 

[0.97] 

1.03 

[0.26] 

0.99 

[0.67] 

N/A N/A N/A N/A 

12 
0.94 

[0.53] 
0.90 

[0.64] 
0.92 

[0.84] 
0.93 

[0.59] 
0.93 

[0.97] 
0.95 

[0.61] 
0.94 

[0.99] 
0.97 

[0.52] 
0.96 

[0.96] 
N/A N/A N/A N/A 

 Alternative: model (3) using concatenated FCI versus model (1) 

1  
0.99 

[0.74] 

1.00 

[0.40] 

0.99 

[0.82] 

1.00 

[0.70] 

0.99 

[0.59] 

1.00 

[0.67] 

1.10 

[0.02]* 

1.02 

[0.05] 

1.01 

[0.22] 

1.02 

[0.04]* 

1.06 

[0.00]* 

1.02 

[0.03]* 

3  
1.00 

[0.51] 
1.00 

[0.28] 
0.99 

[0.73] 
1.00 

[0.57] 
0.98 

[0.64] 
1.00 

[0.67] 
1.15 

[0.00]* 
1.05 

[0.02]* 
1.02 

[0.24] 
1.05 

[0.01]* 
1.09 

[0.00]* 
1.04 

[0.01]* 

6  
0.97 

[0.62] 

1.00 

[0.55] 

0.97 

[0.94] 

0.97 

[0.88] 

0.96 

[0.73] 

0.97 

[0.86] 

1.12 

[0.03]* 

1.05 

[0.03]* 

0.97 

[0.83] 

1.05 

[0.03]* 

1.08 

[0.10] 

1.05 

[0.03]* 

9  
0.96 

[0.62] 
0.97 

[0.59] 
0.96 

[0.87] 
0.96 

[0.82] 
0.93 

[0.84] 
0.96 

[0.97] 
1.08 

[0.09] 
1.01 

[0.14] 
0.93 

[0.95] 
1.01 

[0.19] 
1.13 

[0.05] 
1.01 

[0.15] 

12  
0.90 

[0.64] 

0.94 

[0.84] 

0.94 

[0.59] 

0.93 

[0.97] 

0.95 

[0.62] 

0.94 

[0.99] 

1.02 

[0.47] 

0.98 

[0.76] 

0.94 

[0.57] 

0.98 

[0.80] 

1.11 

[0.44] 

0.97 

[0.77] 

Note: h denotes forecasting horizon. The 2nd column in the last six sub-samples are based on enhanced samples 

by foregoing forecasts; p-values smaller than 5% are marked by *; N/A means not available 
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Table 3: Selected Indicator lags and Estimated Weights for FCIs Targeted at IP Growth 

 

Market 

Type 

Subsample size 1980m8-2000m12 1980m8-2006m12 1980m8-2012m12 

Indicator lag weight lag weight lag weight 

F
o

re
x

 m
ar

k
et

 

CIP vis-à-vis UK sterling  2 -0.062 1 -0.072 2 -0.037 

CIP vis-à-vis Canadian dollar 3 0.127 3 0.143 3 0.064 

CIP vis-à-vis Sweden krona 1 0.067 1 0.063 1 0.049 

RER US dollar 5 -0.015 4 -0.044 3 -0.005 

E
q

u
it

y
 

m
ar

k
et

 

Ratio of SMI: USA/Canada 6 0.091 6 0.077 6 0.093 

Ratio of SMI: USA/Germany 6 0.062 6 0.095 6 0.138 

Ratio of SMI: USA/Japan 1 0.076 6 -0.009 6 -0.040 

Ratio of SMI: USA/UK 5 0.012 1 -0.048 6 -0.064 

F
ix

ed
 i

n
co

m
e 

m
ar

k
et

 

Corporate bond yield spread 1 0.143 1 0.168 2 0.226 

TB spread: 10-to-1 years 6 0.115 6 0.144 6 0.103 

TB spread: 20-to-10 years 6 0.123 6 0.093 1 -0.024 

TB spread: 20-to-1 years 6 0.154 6 0.148 6 0.059 

TB spread: 6-to-3 months 2 -0.093 2 -0.139 3 -0.135 

TED: interbank loan to TB rates 4 0.050 4 0.069 6 0.018 

B
an

k
in

g
 s

ec
to

r 

IR premium: MMR net of T-Bill rate 5 -0.130 6 -0.120 6 -0.163 

IR spread: lending-to-deposit rates 1 0.076 1 0.070 2 0.049 

IR spread: Mortgage-to-corporate rates 5 -0.140 5 -0.115 6 -0.060 

Total liability to equity ratio 1 -0.104 1 -0.053 6 0.037 

First difference of above 3 -0.076 3 -0.086 6 -0.064 

Total lending to deposit ratio 1 0.089 1 0.047 6 -0.066 

First difference of above 1 0.069 1 0.119 1 0.136 

Lending: mortgage to loan ratio 6 0.071 6 0.023 1 -0.047 

First difference of above 1 0.018 1 0.041 1 0.075 

Debt to liquidity ratio: M1 to liquidity 1 0.000 6 0.080 6 0.124 

First difference of above 1 -0.065 1 -0.091 1 -0.087 

 Absolute Average 3.14 0.08 3.17 0.09 4.1 0.08 

Note: Bold lags indicate lag shifts; the weights in bold italics are insignificant at 5%; the grey shaded row 

blocks indicate relatively constant weights of unchanging lagged indicators over samples. 
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Table 4: Selected Indicator lags and Estimated Weights for FCIs Targeted at GDP growth 

 

Market 
Type 

Subsample size 1980m8-2000m12 1980m8-2006m12 1980m8-2012m12 

Indicator lag weight lag weight lag weight 

F
o

re
x

 m
ar

k
et

 

CIP vis-à-vis UK sterling  3 -0.064 3 -0.062 3 -0.013 

CIP vis-à-vis Canadian dollar 3 0.149 3 0.153 3 0.058 

CIP vis-à-vis Sweden krona 1 0.064 1 0.056 1 0.025 

RER US dollar 3 0.088 3 0.077 6 0.105 

E
q

u
it

y
 

m
ar

k
et

 

Ratio of SMI: USA/Canada 6 0.086 6 0.079 6 0.091 

Ratio of SMI: USA/Germany 6 0.074 6 0.126 6 0.163 

Ratio of SMI: USA/Japan 6 0.082 6 0.013 1 -0.072 

Ratio of SMI: USA/UK 2 0.008 3 -0.027 6 -0.068 

F
ix

ed
 i

n
co

m
e 

m
ar

k
et

 

Corporate bond yield spread 2 0.125 1 0.141 1 0.183 

TB spread: 10-to-1 years 5 0.147 6 0.168 6 0.092 

TB spread: 20-to-10 years 3 0.092 3 0.066 1 -0.062 

TB spread: 20-to-1 years 5 0.153 5 0.146 1 -0.017 

TB spread: 6-to-3 months 3 -0.119 3 -0.156 3 -0.135 

TED: interbank loan to TB rates 6 0.089 6 0.106 6 0.046 

B
an

k
in

g
 s

ec
to

r 

IR premium: MMR net of T-Bill rate 5 -0.143 5 -0.133 5 -0.136 

IR spread: lending-to-deposit rates 3 0.068 2 0.054 3 0.017 

IR spread: Mortgage-to-corporate rates 5 -0.142 5 -0.120 1 0.011 

Total liability to equity ratio 1 -0.068 1 -0.026 6 0.102 

First difference of above 1 -0.118 1 -0.129 1 -0.087 

Total lending to deposit ratio 1 0.062 1 0.024 6 -0.065 

First difference of above 2 0.078 2 0.101 1 0.111 

Lending: mortgage to loan ratio 6 0.016 1 -0.017 1 -0.100 

First difference of above 1 0.009 3 -0.038 3 -0.026 

Debt to liquidity ratio: M1 to liquidity 1 -0.032 6 0.038 6 0.132 

First difference of above 3 -0.053 3 -0.068 3 -0.074 

 Absolute Average 3.36 0.09 3.42 0.08 3.78 0.08 

Note: Bold lags indicate lag shifts; the weights in bold italics are insignificant at 5%; the grey shaded row 

blocks indicate relatively constant weights of unchanging lagged indicators over samples. 
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Table 5: Selected Indicator lags and Estimated Weights for FCIs Targeted at Inflation 

 

Market 

Type 

Subsample size 1980m8-2000m12 1980m8-2006m12 1980m8-2012m12 

Indicator lag weight lag weight lag weight 

F
o

re
x

 m
ar

k
et

 

CIP vis-à-vis UK sterling  1 -0.061 1 -0.056 1 -0.033 

CIP vis-à-vis Canadian dollar 3 -0.035 3 -0.034 3 -0.051 

CIP vis-à-vis Sweden krona 6 0.077 6 0.058 6 0.049 

RER US dollar 6 -0.018 6 -0.027 1 0.012 

E
q

u
it

y
 

m
ar

k
et

 

Ratio of SMI: USA/Canada 1 -0.122 1 -0.127 1 -0.108 

Ratio of SMI: USA/Germany 1 0.000 6 -0.016 3 0.022 

Ratio of SMI: USA/Japan 1 -0.081 1 -0.094 1 -0.102 

Ratio of SMI: USA/UK 6 0.057 1 -0.015 1 -0.028 

F
ix

ed
 i

n
co

m
e 

m
ar

k
et

 

Corporate bond yield spread 1 -0.126 1 -0.115 1 -0.054 

TB spread: 10-to-1 years 6 -0.131 5 -0.119 5 -0.124 

TB spread: 20-to-10 years 3 -0.069 3 -0.085 3 -0.106 

TB spread: 20-to-1 years 4 -0.128 4 -0.125 4 -0.136 

TB spread: 6-to-3 months 6 -0.040 6 -0.042 6 -0.044 

TED: interbank loan to TB rates 6 -0.133 4 -0.123 6 -0.135 

B
an

k
in

g
 s

ec
to

r 

IR premium: MMR net of T-Bill rate 1 0.165 1 0.166 1 0.140 

IR spread: lending-to-deposit rates 1 0.018 1 0.009 6 -0.022 

IR spread: Mortgage-to-corporate rates 4 0.140 4 0.142 1 0.152 

Total liability to equity ratio 1 0.059 1 0.075 1 0.094 

First difference of above 2 0.033 2 0.032 1 0.034 

Total lending to deposit ratio 1 -0.105 1 -0.109 6 -0.103 

First difference of above 4 -0.023 4 -0.007 1 0.027 

Lending: mortgage to loan ratio 1 -0.106 1 -0.101 1 -0.117 

First difference of above 1 -0.010 1 -0.023 1 -0.020 

Debt to liquidity ratio: M1 to liquidity 6 0.006 6 0.047 6 0.076 

First difference of above 4 -0.011 5 -0.013 4 -0.027 

 Absolute Average 2.72 0.07 2.65 0.07 2.94 0.07 

Note: Bold lags indicate lag shifts; the weights in bold italics are insignificant at 5%; the grey shaded row 

blocks indicate relatively constant weights of unchanging lagged indicators over samples. 
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Table 6:   Tables 3-5 in Combination  

Target: IP growth Target: GDP growth Target: Inflation 
1980m8-2000m12 1980m8-2006m12 1980m8-2012m12 1980m8-2000m12 1980m8-2006m12 1980m8-2012m12 1980m8-2000m12 1980m8-2006m12 1980m8-2012m12 

X1(-2) -0.062 X1(-1) -0.072 X1(-2) -0.037 X1(-3) -0.064 X1(-3) -0.062 X1(-3) -0.013 X1(-1) -0.061 X1(-1) -0.056 X1(-1) -0.033 

X2(-3) 0.127 X2(-3) 0.143 X2(-3) 0.064 X2(-3) 0.149 X2(-3) 0.153 X2(-3) 0.058 X2(-3) -0.035 X2(-3) -0.034 X2(-3) -0.051 

X3(-1) 0.067 X3(-1) 0.063 X3(-1) 0.049 X3(-1) 0.064 X3(-1) 0.056 X3(-1) 0.025 X3(-6) 0.077 X3(-6) 0.058 X3(-6) 0.049 

X4(-5) -0.015 X4(-4) -0.044 X4(-3) -0.005 X4(-3) 0.088 X4(-3) 0.077 X4(-6) 0.105 X4(-6) -0.018 X4(-6) -0.027 X4(-1) 0.012 

X5(-6) 0.091 X5(-6) 0.077 X5(-6) 0.093 X5(-6) 0.086 X5(-6) 0.079 X5(-6) 0.091 X5(-1) -0.122 X5(-1) -0.127 X5(-1) -0.108 

X6(-6) 0.062 X6(-6) 0.095 X6(-6) 0.138 X6(-6) 0.074 X6(-6) 0.126 X6(-6) 0.163 X6(-1) 0.000 X6(-6) -0.016 X6(-3) 0.022 

X7(-1) 0.076 X7(-6) -0.009 X7(-6) -0.040 X7(-6) 0.082 X7(-6) 0.013 X7(-1) -0.072 X7(-1) -0.081 X7(-1) -0.094 X7(-1) -0.102 

X8(-5) 0.012 X8(-1) -0.048 X8(-6) -0.064 X8(-2) 0.008 X8(-3) -0.027 X8(-6) -0.068 X8(-6) 0.057 X8(-1) -0.015 X8(-1) -0.028 

X9(-1) 0.143 X9(-1) 0.168 X9(-2) 0.226 X9(-2) 0.125 X9(-1) 0.141 X9(-1) 0.183 X9(-1) -0.126 X9(-1) -0.115 X9(-1) -0.054 

X10(-6) 0.115 X10(-6) 0.144 X10(-6) 0.103 X10(-5) 0.147 X10(-6) 0.168 X10(-6) 0.092 X10(-6) -0.131 X10(-5) -0.119 X10(-5) -0.124 

X11(-6) 0.123 X11(-6) 0.093 X11(-1) -0.024 X11(-3) 0.092 X11(-3) 0.066 X11(-1) -0.062 X11(-3) -0.069 X11(-3) -0.085 X11(-3) -0.106 

X12(-6) 0.154 X12-6) 0.148 X12(-6) 0.059 X12(-5) 0.153 X12(-5) 0.146 X12(-1) -0.017 X12(-4) -0.128 X12(-4) -0.125 X12(-4) -0.136 

X13(-2) -0.093 X13(-2) -0.139 X13(-3) -0.135 X13(-3) -0.119 X13(-3) -0.156 X13(-3) -0.135 X13(-6) -0.040 X13(-6) -0.042 X13(-6) -0.044 

X14(-4) 0.050 X14(-4) 0.069 X14(-6) 0.018 X14(-6) 0.089 X14(-6) 0.106 X14(-6) 0.046 X14(-6) -0.133 X14(-4) -0.123 X14(-6) -0.135 

X15(-5) -0.130 X15(-6) -0.120 X15(-6) -0.163 X15(-5) -0.143 X15(-5) -0.133 X15(-5) -0.136 X15(-1) 0.165 X15(-1) 0.166 X15(-1) 0.140 

X16(-1) 0.076 X16(-1) 0.070 X16(-2) 0.049 X16(-3) 0.068 X16(-2) 0.054 X16(-3) 0.017 X16(-1) 0.018 X16(-1) 0.009 X16(-6) -0.022 

X17(-5) -0.140 X17(-5) -0.115 X17(-6) -0.060 X17(-5) -0.142 X17(-5) -0.120 X17(-1) 0.011 X17(-4) 0.140 X17(-4) 0.142 X17(-1) 0.152 

X18(-1) -0.104 X18(-1) -0.053 X18(-6) 0.037 X18(-1) -0.068 X18(-1) -0.026 X18(-6) 0.102 X18(-1) 0.059 X18(-1) 0.075 X18(-1) 0.094 

X22(-3) -0.076 X22(-3) -0.086 X22(-6) -0.064 X22(-1) -0.118 X22(-1) -0.129 X22(-1) -0.087 X22(-2) 0.033 X22(-2) 0.032 X22(-1) 0.034 

X19(-1) 0.089 X19(-1) 0.047 X19(-6) -0.066 X19(-1) 0.062 X19(-1) 0.024 X19(-6) -0.065 X19(-1) -0.105 X19(-1) -0.109 X19(-6) -0.103 

X23(-1) 0.069 X23(-1) 0.119 X23(-1) 0.136 X23(-2) 0.078 X23(-2) 0.101 X23(-1) 0.111 X23(-4) -0.023 X23(-4) -0.007 X23(-1) 0.027 

X21(-6) 0.071 X21(-6) 0.023 X21(-1) -0.047 X21(-6) 0.016 X21(-1) -0.017 X21(-1) -0.100 X21(-1) -0.106 X21(-1) -0.101 X21(-1) -0.117 

X25(-1) -0.018 X25(-1) -0.041 X25(-1) -0.075 X25(-1) 0.009 X25(-3) -0.038 X25(-3) -0.026 X25(-1) -0.010 X25(-1) -0.023 X25(-1) -0.020 

X20(-1) 0.000 X20(-6) 0.080 X20(-6) 0.124 X20(-1) -0.032 X20(-6) 0.038 X20(-6) 0.132 X20(-6) 0.006 X20(-6) 0.047 X20(-6) 0.076 

X24(-1) -0.065 X24(-1) -0.091 X24(-1) -0.087 X24(-3) -0.053 X24(-3) -0.068 X24(-3) -0.074 X24(-4) -0.011 X24(-5) -0.013 X24(-4) -0.027 

Note: Refer to Table 1 for indicators’ definition. Bold lags indicate lag shifts; Weights in bold italics are insignificant at 5%; unchanging indicators with relatively constant 

weights across samples are marked in grey shade. 
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Table 7. Absolute MSEs from Model (1) and Model (3) Using Concatenated FCIs: 

Forecasting Performance Leading into the 2008 Crisis 

Forecasting 

period 
2001M1-2007M12 2007M6-2008M6 2008M1-2010M12 

Model (1) (3) (1) (3) (1) (3) 

h Target: IP 

1 0.828 0.822 0.748 0.663 1.688 1.503 

3 1.368 1.304 1.519 1.128 4.053 2.905 

6 1.920 1.738 1.952 1.637 7.052 4.437 

9 2.247 1.982 N/A N/A 9.422 5.151 

12 2.200 1.963 N/A N/A 11.132 5.821 

 Target: GDP 

1 1.339 1.377 0.872 0.774 1.457 1.539 

3 1.308 1.371 0.884 0.804 1.686 1.747 

6 1.335 1.494 0.952 0.858 2.441 2.084 

9 1.289 1.512 N/A N/A 3.201 2.273 

12 1.312 1.568 N/A N/A 3.850 2.302 

 Target: Inflation 

1 0.415 0.413 0.502 0.510 0.669 0.699 

3 0.784 0.775 1.049 1.012 1.654 1.781 

6 0.795 0.773 1.449 1.320 2.267 2.436 

9 0.846 0.819 N/A N/A 2.561 2.636 

12 0.897 0.838 N/A N/A 2.844 2.810 

 

 


