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Abstract

We explore the role of taxes on stimulating investment decisions for levered firms
under cash flows and investment costs uncertainty using the adjusted present value-
based real options approach developed by Myers & Read (2019). We extend their
work to consider combined tax credits and uncertain investment costs. We then run a
numerical analysis to quantify the impact of uncertainty, corporate tax and investment
tax credit in stimulating investments.
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1 Introduction

Myers & Read (2019) observe that “the effects of financial leverage and taxes on the

valuation of real options have never been addressed". To this end, we explore the impact of

leverage and taxes on irreversible investment decisions under cash flows and investment

costs uncertainty using their adjusted present value-based real options approach. Given the

capital structure, which is summarized by a target debt ratio, they value contingent claims

in a simple way. We extend their work to consider combined tax credits and uncertain

investment costs. The latter, suggested by them as well, enables us to capture the case

where investment cost correlates negatively with cash flows. This is a striking fact for

many developing countries whose downturns correspond to lower growth rates of cash

flows and higher prices of (imported) investment goods. Cash flow uncertainty interacts

with the tax rules since firms may not be able fully utilize tax losses. The latter, distinct

effect is also considered below.

An investment opportunity is a call option on its future cash flows. Firms usually

have a target debt in financing such opportunities. In addition to this explicit one, there

exists another leverage related to the real call option. The difference between the explicit

debt and the options leverage is the debt capacity of this real call option. This capacity

is usually a negative one for call options. Myers & Read (2019) show that “negative debt

capacity means that the options leverage displaces explicit borrowing". To the extent that it

displaces explicit debt, it will reduce the value of the tax shields. In this paper, we will

derive their expressions and compute their values.

2 Investment Policy

We consider a risk-neutral firm which operates in complete markets in which time evolves

continuously. The firm faces a standard irreversible investment problem to choose the
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timing of investment optimally under uncertainty and taxes. This investment project

generates future uncertain cash flows over an infinite horizon once undertaken. If the

project is unsuccessful, its fixed cost that is paid upfront is unrecoverable. To resolve

uncertainty, the investor may delay the investment decision, which constitutes an option

to wait for the firm. As for taxes, we consider only corporate taxes together with the

tax-deductibility of interest expenses. In this model, investors anticipate that taxes affect

not only cash flows as in the conventional approach but also discount rates in this model.

We assume an economy with complete financial markets whose agents make decisions

over an infinite time horizon. Agents take the probability space (Ω,F, P) where Ω is the

set of possible realizations of the economy, F the σ-field of distinguishable events and P

the actual probability on F as given. Finally, F = {Ft, t ∈ [0,∞]} denotes the augmented

filtration or information generated by the process of asset prices. As for dealing with future

cash flows agents utilize stochastic discount factors which satisfy their risk-neutrality

behavior. We start with a stochastic discount factor Λ to discount future cash flows:

dΛ(t) = −Λ(t)[rdt+ νdZΛ(t)], (1)

where r is the risk-free rate, ν the market price of risk and ZΛ(t) is a standard Brownian

motion under the physical measure P.

Following the literature for the sake of tractability, we model the investment project’s

after-tax cash flows π as a geometric Brownian motion.1

dπ(t) = π(t)[(1 − τ)µπdt+ (1 − τ ′)σπdZπ(t)], π(0) = π0, (2)

where µπ > 0 is the mean growth rate of future cash flows, σπ > 0 the magnitude of the

uncertainty and Zπ denotes another standard Brownian motion under the physical measure

1A more realistic modelling of cash flows would require negative cash flows, i.e., normally distributed
cash-flows. In this regards, arithmetic Brownian motion or its mean reversion extended version is better
suited to model cash flows.
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P. Finally, the correlation between ZΛ(t) and Zπ(t) is ρπ,Λ. Having specified the processes

for the discount factor and cash flows, we now define the market price of risk as ν = µπ−r
σπ

.

Also, note that the mean growth rate of cash flows defined as µπ = r+ νρ(1 − τ ′)σπ, hence

its risk-neutral counterpart is µQ = (1 − τ)µπ − νρπ,Λ(1 − τ ′)σπ. This gives rise to the

following payout ratio:

δ = r+ νρπ,Λ(1 − τ ′)σπ − (1 − τ)µπ = r− µQπ

where is assumed that δ > 0 for the value of the project to be bounded. We assume that

in financing this project, the firm adopts a capital structure characterized by a target debt

ratio of λ, implying that the λ share of the total value of the firm is the debt value. Debt

financing generates tax savings to the extent that its interest payments deducted from

corporate taxation. Then, the present value of project value is given by

VPV(π, 0) = EP0

{∫∞
0

Λ(t)

Λ(0)
π(t)dt

}
− cλVPV + τcλVPV , (3)

whre τ is the corporate tax rate and c is the coupon rate on the perpetual bond. Obtaining

equations for Λ(t) and π(t) from Eq. (1) and Eq. (2), respectively and plugging them into

Eq. (3) and taking expectation and integrating the resulting equation yields:

VPV(π, 0) =
1

1 + (1 − τ)cλ

π(0)
δ

(4)

where 1/δ is the price-earnings ratio.

Upon the investment project initiation, say at time t = 0, the firm starts to generate

perpetual stochastic cash flows. It is assumed that the firm faces stochastic investment

costs for several reasons: (i) changes in technological and market conditions; (ii) the impact

of macroeconomic risk; and (iii) the introduction of investment tax credit stimulus. The

first point can be captured by a GBM type of uncertainty modelling for investment costs as
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follows:

dI(t) = µII(t)dt+ σII(t)dZI (5)

where I(t) is the cost of investment at time t, µI the mean growth rate of investment

costs, σI the volatility term associated with the investment cost and ZI the usual Brownian

motion term which correlates with both that of the cash flows whose correlation coefficient

denoted by ρπ,I and stochastic discount factor denoted by ρI,Λ. Since this is a one-off

investment, only uncertainty over future cash flows has an impact on the value of the

project. So, the net present value of the investment project is equal to classical NPV:

VNPV(π, 0) =
1

1 + (1 − τ)cλ

π(0)
δ

− (1 − τI)I = V
PV − (1 − τI)I (6)

where 1/δ is the price-earnings ratio and τI is the investment tax credit. This equation, as

expected, shows that only the cash flow uncertainty has an impact on the present value of

the project. However, both investment costs and cash flows uncertainties will affect the

project’s option embedded value.

Given uncertainty and irreversibility, the firm chooses the timing of its investment time

optimally. So, the firm’s control variable is the decision about when to invest in the project.

However, the firm’s state variables are π and I. So the manager effectively chooses the cash

flow and investment cost levels at which it is optimal to invest. To simplify the problem, we

use the ratio of π and I denoted by y. When y reaches the value of yI, the firm will invest.

To facilitate the solution, we utilize an Arrow-Debreu claim A(π(0),πI). This fictitious asset

pays exactly $1 when the new process y(t) starting at y(0) reaches yI for the first time
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from below, and 0 otherwise. The value of the project before investing is then given by:2

F(y, 0) = A(y(0),yI)I
[

1
1 + (1 − τ)cλ

yI
δ

− (1 − τI)

]

=

effect of discounting︷ ︸︸ ︷
A(y(0),yI) × VNAPV(yI, 0)︸ ︷︷ ︸

size of net benefit

, (7)

where the variable y is defined exclusive of investment tax credit such that y = π/I. As

mentioned in Dixit et al. (1999) the investment decision is as a trade-off between the size of

the net benefit and the effect of discounting.

We obtain an expression for the value of the Arrow-Debreu security by solving the

following ordinary differential equation (ODE):

EP0 {d〈A(y(0),yI),Λt〉} = 0 : 1
2ΛAyy(dy)

2 +ΛAydy+AydydΛ+AdΛ = 0 (8)

and its boundary conditions are

A(y(0),yI) =


A y(0) < yI

1 y(0) > yI

(9)

Using Ito’s lemma (omitting time indexes and the arguments of A) and after simplifying,

we explicitly write Eq. (8) as:

1
2σ

2
yy

2Ayy + [µQI − µQπ ]yAy − µ
Q
I A− rA = 0 (10)

where we have two new terms σy and µQI which are given by

σy =
√
(1 − τ ′)2σ2

π − 2ρπ,I(1 − τ ′)σπσI + σ
2
I

µQI = µI − ρI,ΛνσI

2This is the extended version of Eq .(4) in McDonald & Siegel (1986).
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We postulate a solution for the ODE in Eq. (8):

A = c1y
γ1 + c2y

γ2

where c1 and c2 are constants which will be pinned down by the above boundary conditions

and γ1 and γ2 will be obtained from the quadratic equation associated with the above

ODE equation. Plugging this back into Eq. (8) yields the well-known quadratic equation

which can be solved for γ1 and γ2:

γ1,2 = −(
µ
Q
π −µQI
σ2
y

− 1
2)±

√[
µ
Q
π −µQI
σ2
y

− 1
2

]2

+
2(r−µQI )

σ2
y

, (11)

By applying the boundary condition, we set c2 and take only the positive γ, i.e., γ1. The

well-known value-matching and smooth-pasting conditions give us the desired expression

for the Arrow-Debreu claim A:

A(y(0),yI) =
(
y(0)
yI

)γ1

Finally, by applying the super contact (the second-order smooth-pasting) condition [see

Dumas (1991)] to Eq. (7) we obtain the optimal yI:

yI = δ[1 + (1 − τ)cλ](1 − τI)
( γ1

γ1 − 1

)
(12)

It is obvious that the combined uncertainty of cash flows and investment costs is greater

than the standalone cash flow volatility and hence implies higher critical values. However,

a greater covariance ρπ,I between changes in π and I implies less uncertainty over their

ratio, and hence a reduced incentive to wait.3

3Note that the random walk modeling of the prices of physical assets is not satisfactory as they have
to converge to their equilibrium levels, but not grow exponentially as suggested by a geometric Brownian
motion.
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3 Numerical Analysis

We take empirically plausible values for the key parameters: r = 5%, µπ = 2%, µI =

4%, σπ = 20%, σI = 25%, ρΛ,π = 0.25, ρΛ,I = 0.25, ρπ,I = 0.35, τ = 0.35, τ ′ = 0.25, τI =

0.25, ν = 0.75, c = 8% and λ = 0.5. Plugging these values will give us the values of the

optimal level of cash flow, the real option and the project’s NPV as well as the debt capacity

of the real option, explicit leverage and implicit leverage. To calculate the option’s debt

capacity, we use the following value matching condition:

δOPVPV −DOP = VNPV ,

where δOP is the usual option hedge ratio (delta), i.e., δOP = ∂V
∂y and DOP the implicit

leverage (the leverage required to replicate the real option). We derive δOP from our the γ

term, which is simply the elasticity of the option value F to the project value VPV . Hence,

we write

γ = δOP
VPV

F
⇒ δOP =

F

VPV
γ,

and solve for DOP. After grossing up, it is given by:

DOP =

[(
F

VPV
γ− 1

)
VPV + (1 − τI)I

]
erτ

Finally, the debt capacity of the real option is the difference between the explicit leverage

λδOPVPV and the implicit leverage DOP.

We reported the results of our numerical analysis in Table 1. The results highlight that

the critical value of π/I takes its lowest level when firms enjoy full offsetting tax losses,

levered capital structure and investment tax credits. Accordingly, we obtain the worst case

for investing when the opposites are in place. The π/I value nearly doubles from its best

value 0.78 to its worst 1.46. The results underscore the importance of the covariance of
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Table 1: Tax Policy and Investment
Correlation ρπ,I < 0 Correlation ρπ,I > 0

λ = 0 λ = 0.5 λ = 0 λ = 0.5 λ = 0 λ = 0.5
σI = 0 σI = 25% σI = 25%

Full Use of Tax Losses
Critical Value 0.89 0.87 0.96 0.94 0.80 0.78
Option Value 0.40 0.42 0.40 0.42 0.41 0.44
NPV 0.85 0.81 0.98 0.94 0.69 0.65
Debt Capacity -0.66 -0.47 -0.55 -0.35 -0.95 -0.77

Partial Use of Tax Losses
Critical Value 0.99 0.97 1.10 1.07 0.86 0.84
Option Value 0.41 0.42 0.42 0.44 0.40 0.42
NPV 1.04 0.99 1.22 1.17 0.80 0.76
Debt Capacity -0.52 -0.32 -0.43 -0.22 -0.73 -0.54

τI = 0
Critical Value 1.32 1.29 1.46 1.43 1.15 1.12
Option Value 0.31 0.32 0.33 0.34 0.28 0.28
NPV 0.79 0.74 0.97 0.92 0.55 0.51
Debt Capacity -0.39 -0.24 -0.34 -0.18 -0.50 -0.36

investment costs with cash flows. A positive correlation can overturn the negative impact

of investment cost uncertainty. Critical values leading to investment in the last two columns

are lower than those reported on the previous four columns. Calibrating the model to

levered firms generates moderate gains in lower critical values. A levered firm has, on

average, about 3 per cent lower level than all-equity firms. Implicit costs of real options are

higher under positively correlated uncertain investment costs and reduce the value of tax

shields. Our results also highlight that under negatively correlated investment costs, the

net benefit has a greater role in determining values. Otherwise, the decline in the discount

factor is more important.

Top panel and bottom panel of Table 1 show the sensitivity of the results to a range

of volatility values as well as to tax and invest tax credit rates. High cash flow volatility

combined with low investment cost volatility produces the worst outcome in terms of

critical value irrespective of their correlation. Positive covariance improves the result.
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Under negative correlation, we observe some nonlinearities. As for taxes, the combination

of corporate tax and investment tax credit produces the most attractive critical values for

levered firms.

4 Conclusion

We extended the model of Myers & Read (2019) to perpetual real options frameworks.

We analyzed the impact of leverage, investment tax credit and tax shields on investment

decisions. We find that investment decisions should take into account additional uncertainty

and its correlation with cash flows. Policymaker should consider the use of investment tax

credit in stimulating investments.
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Figure 1: Effects of Correlated Cash Flows and Investment Costs on Investment
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